

Highlights of Recent Projects: Contributions to Understanding Cold-Formed SteelFramed Systems Response

Tara Hutchinson, UC San Diego

Joint Academia-Industry NHERI Workshop NHERI@UC San Diego

September 21-22, 2020 University of California, San Diego

Outline

Two complementary projects@LHPOST

- 1) System-Level Building Testing: CFS-HUD
- 2) Component-Level Testing: CFS-NHERI (Wall-Line Test Phase)

My Hopeful Outcome (in this 12 min discussion): Demonstrate the success of industry-academe collaborations

1) CFS-HUD: Earthquake and Post-Earthquake Fire Testing of a Mid-Rise CFS-Framed Building

PIs: Tara Hutchinson, Gil Hegemeir, Brian Meacham

Drs. Xiang Wang & Praveen Kamath

CFS-HUD: Building Conceptua

- 6-story (64' tall) CFS building, representative of m
- Structural system:
 - 1) CFS-panelized shearwalls (gyp-bonded steel sheath
 - Long <u>interior</u> corridor SWs with door openings
 - Short/low aspect ratio <u>exterior</u> SWs with windows; <u>tran</u>

sec (est)

D, site class D, $S_{DS} = 1.5g$, $S_{D1} = 0.8g$, seismic base

eral load (exterior walls short) ted) torsional loads bonded shearwalls; tie-down roads and forces

Extreme Events (test) Protocol

Phases of testing:

- 1) White noise & tire shock tests
- 2) Base shaking (pre-fire)
 - White noise intermittent with increasing suite of scaled earthquake motions
 - Three active <u>earthquake</u> test days, one day between each for physical inspection, test data analysis, preparation for next day
- 3) Live fire tests
 - 2 floors of live <u>fire</u> tests
- 4) Aftershock+extreme earthquake tests (post-fire)
 - Post-thermal base shaking earthquake sequence

CFS-HUD: Highlights of Physical Damage & Measured Response

Evolution of building dynamic characteristics

Global SW View – EQ9 (post-fire NF)

UC San Diego

Jacobs School of Engineering

Earthquake & Post-Earthquake Fire Performance of Mid-Rise Light-Gauge Cold-Formed Steel Framed Buildings

Compilation of 2nd Floor Level (Interior Views)

During Final Near-Fault Earthquake Simulation

Post-Fire Tests

What did we NOT learn? What questions remain?

- How would this building have performed with exterior finishes?
 - It was already much stiffer than anticipated, at what demand level would the finishes sufficiently disengage and lack contribution to stiffness and seismic inertial load?
- How does this (gyp-bonded steel sheathed CFS-framed wall system) compare with a *generic structural shearwall*, in a system setting?
 - The stiffness and strength contribution of gyp-bonded steel sheathing is (potentially) a positive aspect; though not yet mainstream in practice
- How would the performance of the building compare if the *diaphragm had been flexible*?
 - Physical modeling necessitated the augmentation of mass loading with steel plates
 this, combined with the drop-in prefabricated CFS-steel sheathed floor segments
 resulted in a very stiff floor diaphragm

What did we NOT learn? What questions remain?

• What is the contribution of the **non-designated** load bearing systems?

2) CFS-NHERI: Shake table and Quasistatic Wall-line Tests

PIs: Tara Hutchinson, Ben Schafer & Kara Peterman Amanpreet Singh & Dr. Xiang Wang (UCSD Researchers)

American Iron and Steel Institute

CFS-NHERI Archetype Buildings

- Complete CFS system walls (gravity and steel sheet shear walls)
- Designed <u>4 and 10</u> story buildings

• Selected shear wall details based on building archetype

- \geq 4' long x 9' tall
- ➤ Single side steel sheet: 30 mil
- Chord Stud pack: 600S250-97
- ➤ Gravity Stud: 600S250-68
- Tie Rod: $\phi 1^{1}/_{8}$ "
- Edge spacing: 2"/12" o.c., #12 screws
- Fully blocked
- Reflect typical shear wall at <u>base</u> of the 4-story building or approximately <u>mid-height</u> in the 10-story building

Reference: Torabian, S., Nia, Z. S., & Schafer, B. W. (2016). An Archetype Mid-Rise Building for Novel Complete Cold-Formed Steel Buildings. In Wei-Wen Yu International Specialty Conference on Cold-Formed Steel Structures, Baltimore, MD.

Wall-Line Tests: Experiment Objectives

- Characterize dynamic performance of Cold-Formed Steel framed walls subjected to in-line earthquake motions of increasing intensity
- Understand the <u>effect of finishes</u> and <u>effects of openings</u> on wall behavior
- Compare the behavior of <u>Type I and Type II</u> walls
- Compare performance of walls with <u>steel tension</u> <u>tie-rods</u> assembly versus <u>hold-down</u> systems
- Compare the behavior of <u>symmetrical and</u> <u>unsymmetrical</u> walls
- Examine lateral load sharing between shear walls placed in-line with gravity walls

Test Setup: Shake Table Tests

CFS-NHERI: Highlights of Physical Damage & Measured Response of Select Wall-Line Components

SGGS-1 (Baseline Specimen) – Design EQ

CFS-NHERI IN-LINE WALL SHAKE TABLE TESTS

SGGS-1 BASELINE SPECIMEN
1994 NORTHRIDGE (CANOGA PARK)
SCALED TO DESIGN PERFORMANCE LEVEL
OCTOBER 29, 2018

JOHNS HOPKINS UC San Diego UMass Amherst

Force-Displacement Response: SGGS-1 (Baseline specimen)

Specimen	Peak Strength, V_{max} [kip]	Drift, $\delta_{V_{max}}$ [in] (%)	Initial Stiffness*, k_e [kip/in]	Secant Stiffness, k_{sec} [kip/in]
SGGS-1	36.0	2.11 (1.95%)	66.2	17.1

CFS-NHERI IN-LINE WALL SHAKE TABLE TESTS

SGGG-1 ASYMMETRIC SPECIMEN
1994 NORTHRIDGE (CANOGA PARK)
SCALED TO ABOVE DESIGN PERFORMANCE LEVEL
DECEMBER 10, 2018

JOHNS HOPKINS UC San Diego UMass Amherst

Symmetric vs Unsymmetric Wall Systems

Specimen	Peak Strength, V_{max} [kip]	Drift, δ_{Vmax} [in] (%)	Initial Stiffness*, k_e [kip/in]	Secant Stiffness, [kip/in]	
Specimen				k^+_{sec}	k- _{sec}
SGGS-1	36.0	2.11 (1.95%)	66.2	17.1	28.4
SGGG-1	18.6 (\u00e448.3%)	1.73 (1.60%)	30.2 (\\$54.4%)	10.8 (↓ 36.9%)	13.3

Type I vs Type II Wall Systems

Specimen	Peak Strength, V_{max} [kip]	Drift, δ_{Vmax} [in] (%)	Initial Stiffness (kip/in)
SGGS-2	25.5	1.53 (1.41%)	25.87
SGGS-1	36.0 (†41.3%)	2.11 (1.95%)	47.39

Initial Stiffness: secant at 40% of peak strength

Concluding Remarks

- Academic researchers sometimes come up with wild ideas, industry can help bring us back to the realities of construction practice
 - Industry collaborations are essential in these large-scale testing endeavors
- Together industry-academic research teams promise to make real change in understanding & improving the performance of structural (& non-structural) systems during earthquake events

