

NHERI@UCSD Shake Table Users Training Workshop

Joel P. Conte, Professor UC San Diego December 14, 2015

Objectives

- Familiarize prospective users of the NHERI@UCSD shake table with its simulation capabilities and performance characteristics and limitations.
- Introduce prospective users to the basics of large-scale shake table testing, including recommendations for how to plan for and execute successful large-scale shake table projects:
 - Pros and cons of shake table experiments
 - Experiment design and execution
 - Project management
 - Data acquisition, storage, retrieval, and interpretation
- Provide prospective users with the knowledge necessary to prepare research proposals utilizing the NHERI Experimental Facility at UC San Diego, including the Educational and Community Outreach (ECO) aspect.

Workshop Program – Monday Morning

- 8:30 9:00am Registration and Welcome
- 9:00 9:15am Welcoming Remarks by Benson Shing, Chair of UC San Diego Department of Structural Engineering
- 9:15 -10:00am Overview of NHERI Shake Table Experimental Facility at UC San Diego (J. Conte, UC San Diego)
- 10:00 -10:45am Overview of NHERI Shake Table Experimental Facility at UC San Diego (J. Conte, UC San Diego)
- 10:45 -11:00am Break
- 11:00 -11:45am Large-Scale Shake Table Testing (J. Restrepo, UC San Diego)
- 11:45 12:30pm Example of Total Project Planning Case Study 1: "PCI Building" (R. Fleischman, U. of Arizona)
- 12:30 1:30pm Lunch

Workshop Program – Monday Afternoon

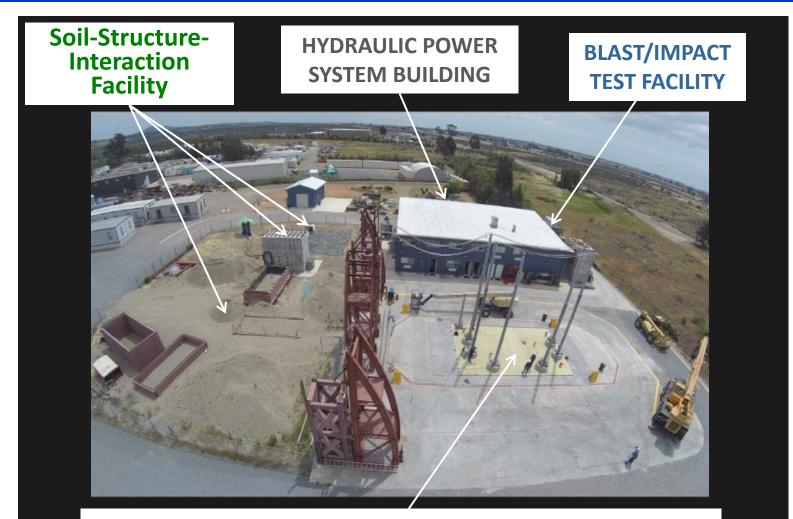
- 1:30 2:30pm Facility Tour
- 2:45 3:30pm Instrumentation and Data Acquisition (D. Radulescu, R. Beckley, R. Astroza)
- 3:30 3:50pm NSF Engineering for Natural Hazards (ENH) research program (Joy Pauschke, NSF)
- 3:50 4:05pm Break
- 4:05 4:50pm Modeling, Similitude and Simulation (A. Koutras, UC San Diego)
- 4:50 5:05pm Break
- 5:05 5:50pm Example of Total Project Planning Case Study 2: "Geo-Structures" (A. Gavras, UC Davis)

6:00pm Dinner

Workshop Program – Monday Afternoon

- 9:00 9:45am Example of Total Project Planning Case Study 3: "BNCS Building" (T. Hutchinson, UC San Diego)
- 9:45 10:30am Data Management, Archiving and Sharing (Elide Pantoli, UC San Diego)
- 10:30 10:45am Break
- 10:45 11:30am Hybrid Shake Table Testing (Gilberto Mosqueda, UC San Diego)
- 11:30 12:00pm Education and Community Outreach (L. Van Den Einde, UC San Diego)
- 12:00 12:30pm Questions & Answers and Closure
- 12:30 1:00pm Lunch

Presenters


- Rodrigo Astroza, UC San Diego
- Joel Conte, UC San Diego
- Andreas Gavras, UC Davis
- Andreas Koutras, UC San Diego
- Elide Pantoli, UC San Diego
- Jose Restrepo, UC San Diego
- Lelli Van Den Einde, UC San Diego

- Robert Beckley, UC San Diego
- Robert Fleischman, U. of Arizona
- Tara C. Hutchinson, UC San Diego
- Gilberto Mosqueda, UC San Diego
- Dan Radulescu
- Benson Shing, UC San Diego

Englekirk Structural Engineering Center

Englekirk Structural Engineering Center

Large High-Performance Outdoor Shake Table (LHPOST)

IAS Accreditation of ESEC

Print Date: 09/23/2013

This accreditation certificate supersedes any IAS accreditation certificate bearing an earlier date. The certificate becomes invalid upon suspension, cancellation or revocation of accreditation. See the IAS Accreditation Listings on the web at www.iasonline.org for current accreditation information, or contact IAS directly at (562) 364-8201.

Soil-Foundation-Structure Interaction Facility

Bridge Abutment - Soil Interaction (Caltrans)

Pile – soil interaction (Port of Los Angeles)

NHERI@UCSD Shake Table Experimental Facility: Overview

Joel P. Conte, Professor UC San Diego December 14, 2015

NHERI@UC San Diego Personnel

Joel Conte Pl

Tara Hutchinson Co PI

Gilberto Mosqueda Co Pl

Benson Shing Co Pl

Lelli Van Den Einde Co Pl

Enrique Luco Senior Personnel

José Restrepo Senior Personnel

Dan Radulescu Operations Manager

Robert Beckley IT Manager

Linda Johnson Office Manager

Alex Sherman Site Foreman

NHERI @ UCSD Workshop, 14-15 December, 2015

Outline

- Overview of NHERI@UCSD Shake Table Experimental Facility
 - Performance Characteristics
 - Capabilities and Limitations
- Large-Scale Shake Table Tests Performed on the NHERI@UCSD Shake Table
- Table Acceleration Tracking Performance
 - Acceleration Reproduction Fidelity

Mission Statement for NHERI@UCSD Team

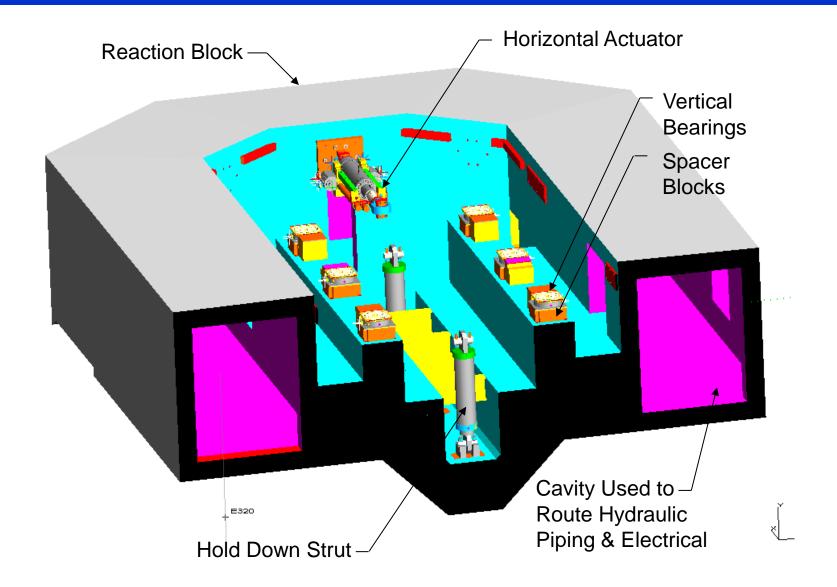
- > Maintain the shake table for safe, efficient, and accurate operation.
- Assist users with experiment planning, proposal preparation, specimen construction, instrumentation, data acquisition, test performance, specimen demolition and removal.
- Keep NHERI@UCSD at the forefront of experimental shake table technology.

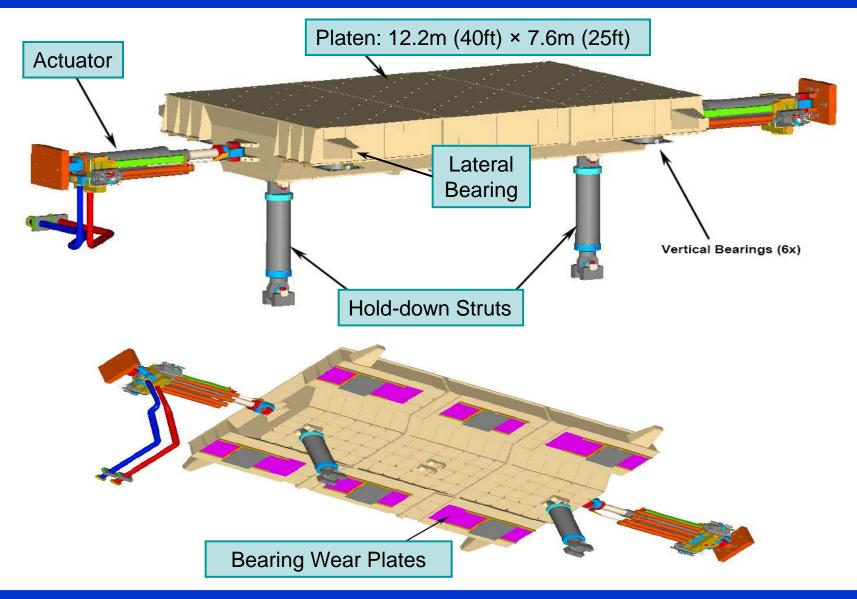
Role of NHERI@UC San Diego Experimental Facility in NSF NHERI Research Program

- Building a seismic-resilient and sustainable built environment requires the <u>understanding and ability to predict more reliably the system-level</u> <u>response</u> of buildings, critical facilities, lifelines, and other civil infrastructure systems to earthquakes.
- Support <u>seismic testing, under near real-world conditions</u>, of large structural, nonstructural, geotechnical, geostructural, and soil-foundationstructural (SFS) systems equipped <u>with hundreds of sensors for detailed</u> <u>monitoring of their seismic response</u>.
- Provide fundamental knowledge and data to <u>support the development</u>, <u>calibration</u>, and <u>validation of high-fidelity</u>, <u>physics-based computational</u> <u>models</u> of structural, geotechnical, and soil-foundation-structural systems.
- Provide <u>validation tests</u> for retrofit methods, protective systems, and the use of new materials, components, systems, and construction methods for seismic resilient and sustainable civil infrastructure.

Large High-Performance Outdoor Shake Table

- Designed to permit accurate simulation of severe earthquake ground motions and, particularly, of strong near-source ground motions.
- Lack of height limitation allows testing of full- or very large-scale structural specimens.
- Table designed in 2001-2002, built in 2002-2004, and commissioned on October 1, 2004, under the NSF NEES Program.
- 24 major tests were performed In 10 years of operation:
 - Reinforced concrete buildings and bridge column
 - Precast concrete parking structure
 - Unreinforced and reinforced masonry building structures
 - Metal building structures
 - Woodframe buildings
 - Wind turbine
 - Soil retaining walls

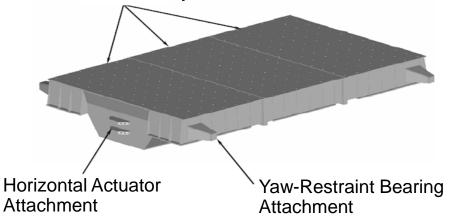

Large High-Performance Outdoor Shake Table

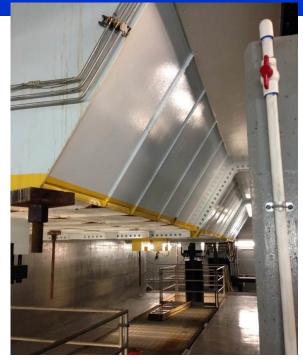

Designed as a 6-DOF shake table, but built as a 1-DOF system to accommodate funding available

±0.75m
40 ft × 25 ft (12.2 m × 7.6 m)
1.8 m/sec
4.7g (bare table condition); 1.2g (4.0MN/400 tons rigid payload)
0.25 – 33 Hz
6.8 MN (680 tons)
20 MN (2,000 tons)
50 MN-m (5,000 ton-m)

Connection of Platen to Reaction Block

Platen, Actuators, Hold-Down Struts, and Bearing Wear Plates

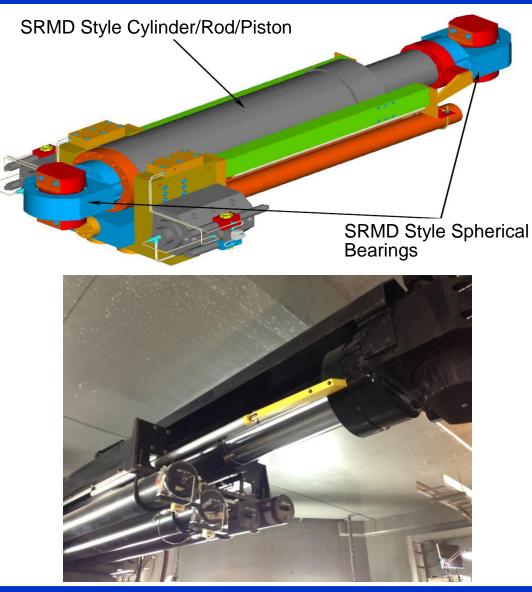


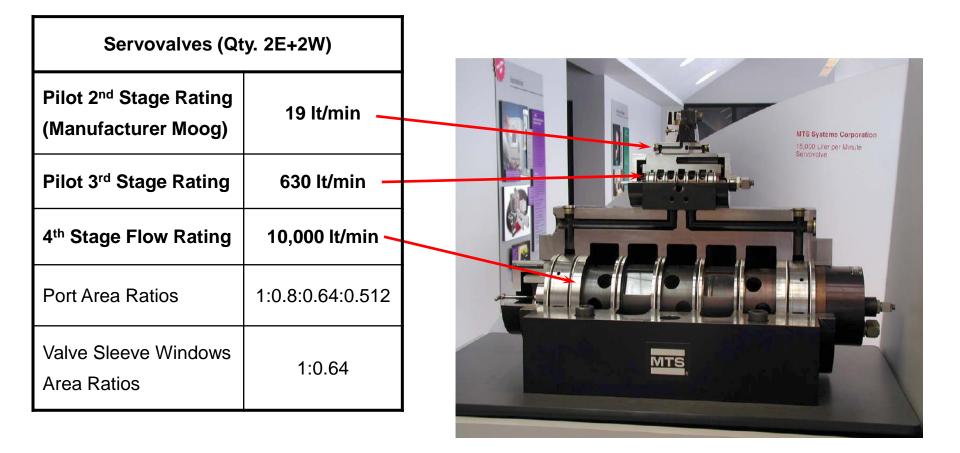

NHERI @ UCSD Workshop, 14-15 December, 2015

Technical Characteristics of Table Platen

Table Platen	
Platen Dimensions	7.6m x 12.2m
Platen Weight	1.128 MN
Platen Effective Mass	1.440 MN/g
Maximum Specimen Payload (Rigid Payload)	20 MN
Maximum Overturning Moment	50 MN-m

3 Piece Assembly

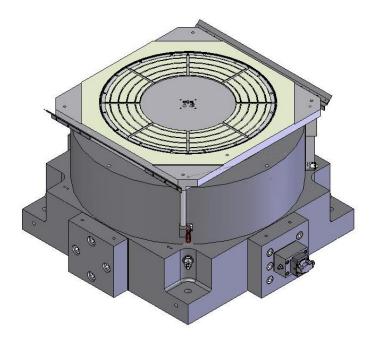



Technical Characteristics of Actuators

Actuators (Qty. 2)		
Stroke	+/- 0.75 m	
Max. Velocity	1.8 m/s	
Max. Acceleration (w/ 4MN Rigid Payload / Bare Table)	1.25g / 4.7g	
Force Capacity (Tension / Compression)	4.2 MN / 2.7 MN	
Rod Diameter	0.3048 m	
Piston Diameter	0.5080 m	
Total Effective Piston Area	0.332 m ²	
Tension Area	0.2027 m ²	
Compression Area	0.1297 m ²	
Peak Extend Flow Rate	21,890 lt/m	
Peak Retract Flow Rate	14,010 lt/m	

NHERI @ UCSD Workshop, 14-15 December, 2015

Technical Characteristics of Servovalves

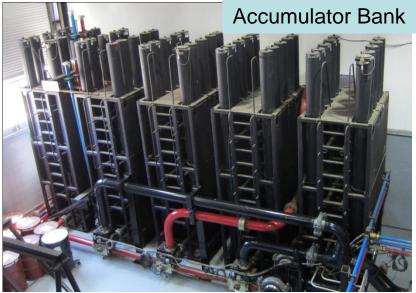

Technical Characteristics of Hold-down Struts

Hold-Down Struts (Qty. 2)		
Nitrogen Pressure	13.8 MPa	
Uni-axial Stroke	2 m	
Pin-to-Pin Length	3.3 m	
Hold-down Force	2.1 MN	
Effective Tension Area	0.15 m ²	

Technical Characteristics of Vertical Bearings

Vertical Bearings (Qty. 6)		
Effective Bearing Area	0.519 m ²	
Vertical Force Capacity	10.0 MN	
Stroke	± 0.013 m	



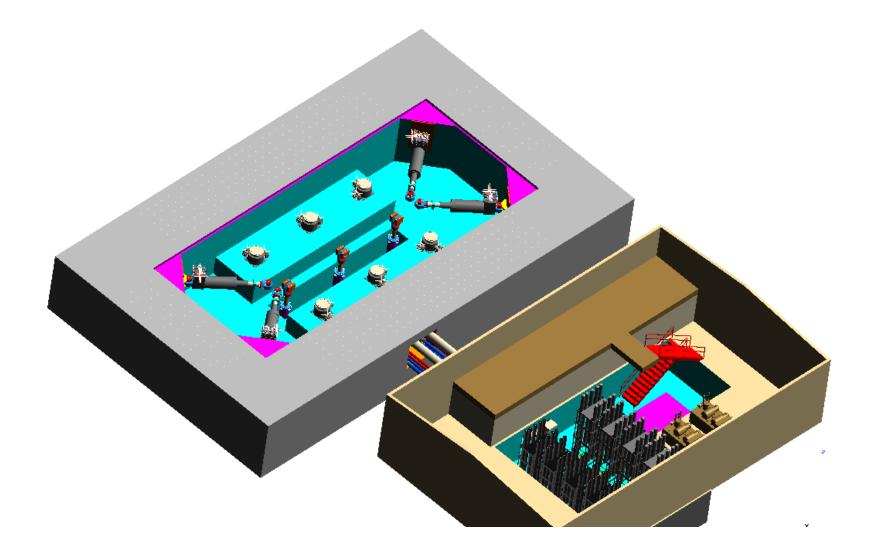

Technical Characteristics of Hydraulic Power System

Hydraulic Power System		
Accumulator Swept Displacement	7.5 m	
Accumulator Bank Pressure	35 MPa	
System Pressure	20.7 MPa	
Blow-down Flow Rate	38,000 lt/min	
HPU Flow Rate @ 35 MPa	431 lt/min	
HPU Flow Rate @ 20.7 MPa	718 lt/min	
Surge Tank Capacity	20,000 lt	

Pump (HPU)

Bare Table Commissioning Tests

Use of LHPOST in Combination with Large Soil Boxes


Laminar soil shear box: $6.7m (L) \times 3.0m (W) \times 4.7m (H)$ Stiff soil confinement box: 10.0m (L) \times 4.6 or 5.8m (W) \times 7.6m (H)

- To investigate the seismic response of soil-foundation-structure systems
- To complement centrifuge tests in order to validate computational models
- To study the performance of underground structures, bridge abutments, earth retaining walls and slope stability in hillside construction
- To investigate soil liquefaction and its effect on the seismic response of soilfoundation-structure systems

Instrumentation Overview

- Data acquisition system with over 600 channels that can be configured to accept:
 - Accelerometers
 - Linear displacement transducers
 - String potentiometers
 - Strain gauges
 - Load Cells
 - Pressure Cells
- High-speed cameras.
- GPS system providing dynamic displacement monitoring in three coordinates.
- Calibration equipment for data acquisition systems and sensors.

Future upgrade of LHPOST to 6 DOFs

Selected Set of Specimens tested on the LHPOST

Collapse Vulnerability and Seismic Design of Metal Buildings PI - Prof. Chia-Ming Uang, UC San Diego

Full-Scale Structural and Non-Structural Building System Performance During Earthquakes PI - Prof. Tara Hutchinson, UC San Diego

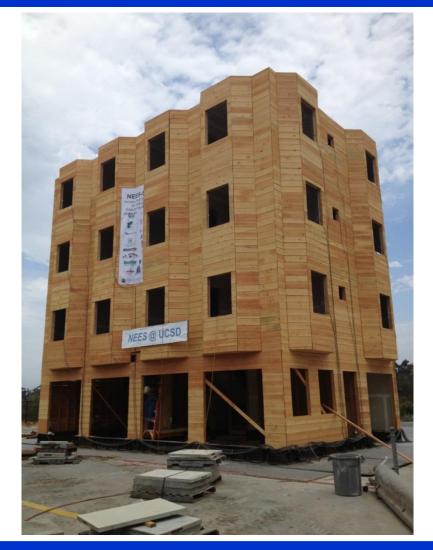
Full-Scale Structural and Non-Structural Building System Performance During Earthquakes PI - Prof. Tara Hutchinson, UC San Diego

NHERI @ UCSD Workshop, 14-15 December, 2015

Full-Scale Structural and Non-Structural Building System Performance During Earthquakes PI - Prof. Tara Hutchinson, UC San Diego

NHERI @ UCSD Workshop, 14-15 December, 2015

Earthquake Performance of Full-Scale Reinforced Soil Wall PI - Prof. Patrick Fox, UC San Diego



Earthquake Performance of Full-Scale Reinforced Soil Wall PI - Prof. Patrick Fox, UC San Diego

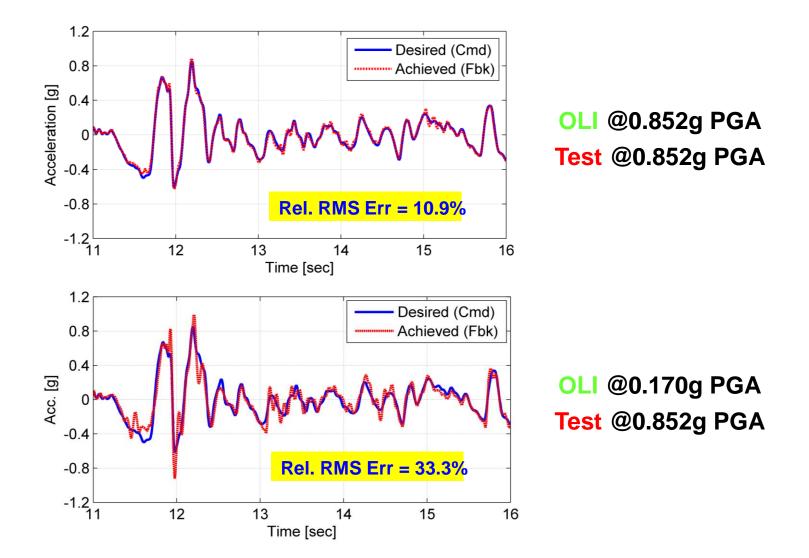
Seismic Risk Reduction for Soft-Story Woodframe Buildings

PI - Prof. John W. van de Lindt, Colorado State University

NHERI @ UCSD Workshop, 14-15 December, 2015

Seismic Risk Reduction for Soft-Story Woodframe Buildings

PI - Prof. John W. van de Lindt, Colorado State University



Seismically Isolated Unibody Residential Buildings for Enhanced Life-Cycle Performance PI - Prof. Gregory Deierlein, Stanford University

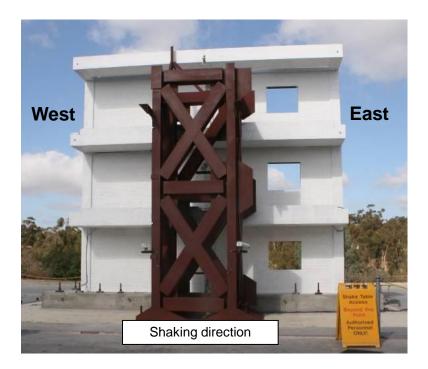


Table Acceleration Tracking Performance (1994 Northridge Earthquake Record at Sylmar Station)

NHERI @ UCSD Workshop, 14-15 December, 2015

Reinforced Concrete Frame Infilled with Unreinforced Masonry Walls PI - Prof. Benson Shing, UC San Diego

2 Acceleration, g 1 **Recorded Motion** -1 Intended Motion -2 3 5 2 6 Time, sec 8 Structural 7 period prior to D 6 Spectral Acceleration, Structural 5 period after **Recorded Motion** 3 ntended Motion 2

0.2

0.4

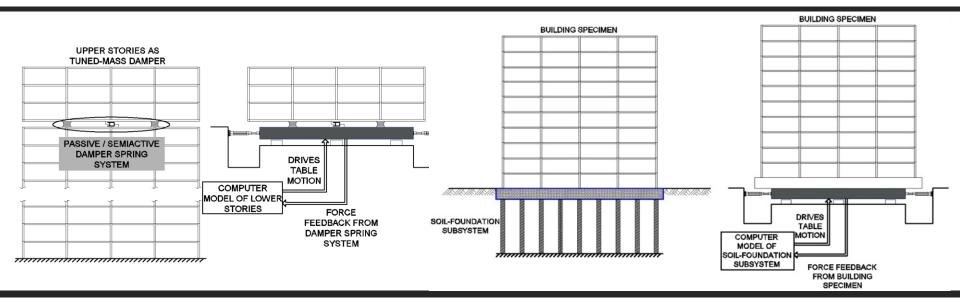
Period, sec

0.6

n

0

100% of Gilroy 3 (1989 Loma Prieta Earthquake)


- Corresponds to the MCE for San Diego for this structure
- Scaled in amplitude by 2.27
- Compressed in time by 0.542

0.8

Hybrid Shake Table Testing

> Basic hardware and software in place for real-time hybrid shake-table testing:

- Multi-channel MTS FlexTest controller
- SCRAMNet ring for real-time communication and synchronization of data flow between shake-table controller, FlexTest controller, and real-time target PC running the Matlab/SIMULINK Real-time Workshop and xPC Target software
- Easy integration of OpenSees/OpenFresco open-source software framework
- 50-ton dynamic actuator
- Portable hydraulic power system

NHERI @ UCSD Workshop, 14-15 December, 2015

Education and Community Outreach

Broad Public Dissemination

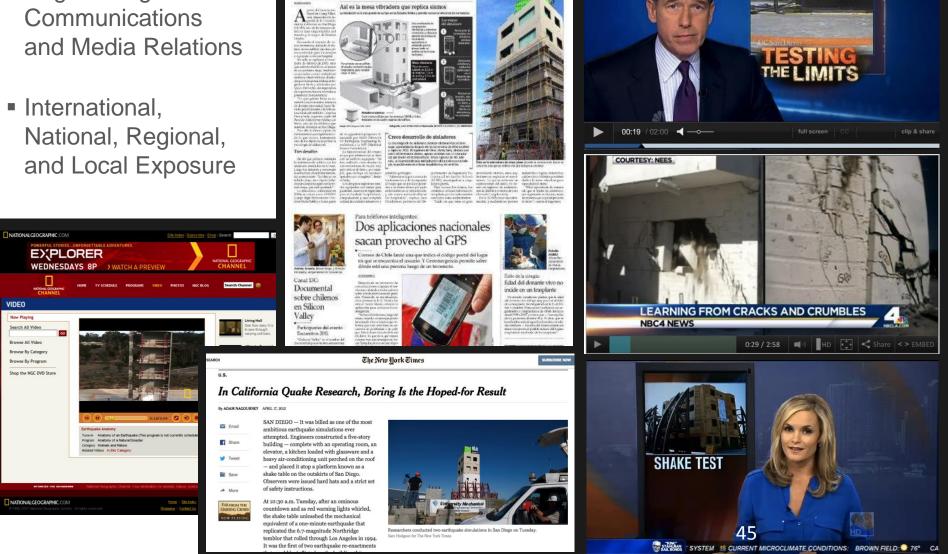
La estructura incluini aisladores sismicos chilenos:

Recrearán en EE.UU. el terremoto del 27-F en un edificio experimental de cinco pisos

Universidad de California, en San Diego

- Jacobs School of Engineering Communications and Media Relations
- International, National, Regional, and Local Exposure

VIDEO


Now Playing

Search All Video

Browse All Video

Browse By Catego

Browse By Program Shop the NGC DVD Store

BEFORE signing of the contract:

NSF Researcher	NHERI Site		
1. Contact site PI and send the proposal to check the feasibility of using the LHPOST.	 Site to respond with comments regarding the test requirements, schedule, and site obligations. 		
2. Send NSF approval as a NHERI project.	CHECKLIST		
3. Send proposed Input Motions to check them against table performance limits.			

AFTER the contract is signed:

NSF Researcher	NHERI Site	
 Prepare and send all contractors information to be added to the University system. 	1. Present Site Safety Rules.	
2. In case some portions of the specimen can be constructed off the table, coordinate with the site for space and equipment required.	 Provide office space for the researcher and/or his/her students. 	
 Prior to occupying the table, send the Input Motions to perform the OLI (table tuning/calibration). 	 Provide Internet access (telepresence, including real- time cameras). 	

AFTER the contract is signed:

NSF Researcher	NHERI Site	
4. Send instrumentation plan.	4. Provide technical assistance when requested.	
5. Send a draft of the Test Sequence.	5. Install sensors and connect them to our DAQ system.	
 Send information related to sensors needed. 	6. Install cameras per researcher instrumentation plan.	
7. If the researcher uses his/her own DAQ, send information to check if it is possible to synchronize it with our DAQ.	7. Test the specimen.	

AFTER the contract is signed:

NSF Researcher	NHERI Site
8. Under the supervision of Alex Sherman (site foreman), begin construction of the specimen.	8. Remove the instrumentation.
9. After the end of testing, demolish the specimen and take it off site.	CONTRACT

NHERI@UC San Diego Personnel

Joel ConteTara HutchinsonGilberto Mosqueda Benson ShingLelli Van Den EindePICo PICo PICo PICo PI

Enrique Luco José Restrepo Dan Radulescu Robert Beckley Senior Personnel Senior PersonneOperations Manager IT Manager

Linda Johnson Office Manager

LHPOST Performance Specifications

- Size: 12.2 m x 7.6 m
- Vertical Payload: 20 MN
- Frequency Bandwidth: 0-20 Hz
- Phase 1: Uniaxial System:
 - Stroke: <u>+</u> 0.75 m; Velocity: <u>+</u> 1.8 m/sec; Acceleration: <u>+</u> 3g
- Phase 2: Triaxial System:

Direction	Acceleration	Velocity	Displacement
Horizontal-X	±3g	±1.8 m/s	:0.75m
Horizontal-Y	±1.5 g	$\pm 0.9 \mathrm{m/s}$	±0.375m
Vertical	±1.0g	± 0.5 m/s	$\pm 0.150\mathrm{m}$