

National Science Foundation University of California at San Diego

UC San Diego JACOBS SCHOOL OF ENGINEERING Structural Engineering

NHERI Lehigh Project Portfolio

James Ricles, NHERI Lehigh PI Lehigh University

Joint Researcher Workshop UC San Diego, Lehigh & SimCenter

December 16-17, 2019 University of California, San Diego

LEHIGH Real-Time Multi-Directional Testing Facility

SIMCENTER COMPUTATIONAL MODELING AND SIMULATION CENTER

NHERI Lehigh EF Capabilities for Natural Hazards Engineering Research

- Large-Scale Hybrid Simulation
- Large-Scale Real-Time Hybrid Simulation
- Large-Scale Real-Time Hybrid Simulation with Multiple Experimental Substructures
- Geographically Distributed Hybrid Simulation
- Geographically Distributed Real-time Hybrid Simulation
- Predefined Load or Displacement (Quasi-Static or Dynamic) Testing
- Dynamic Testing
- Real-time Hybrid Simulation with On-Line Model Updating, Machine-learning based computational modeling

Example Past Projects

Experiment	Capability
3-story building with piping system	Multi-directional real-time hybrid simulation
Self-centering moment-resisting frame (SC-MRF)	Large-scale hybrid simulation
Self-centering concentrically-braced frame (SC-CBF)	Large-scale hybrid simulation
Real-time testing of structures with dampers	Large-scale real-time hybrid simulation with multiple experimental substructures
Seismic hazard mitigation using passive damper systems	Predefined displacement dynamic testing (for characterization) Large-scale real-time hybrid simulations
Tsunami-driven debris	Dynamic testing (impact loading)
Post-tensioned coupled shear wall system	Complex large-scale multi-directional predefined force and displacement quasi-static testing
Inertial force-limiting floor anchorage systems for buildings	Predefined displacement dynamic testing (for characterization)
Cross-Laminated Rocking Wall-Floor Diaphragm Systems	Multi-directional quasi-static and hybrid simulation

DESIGNS A NATURAL HAZARDS

Multi-Directional Large-Scale Real-Time Hybrid Simulation of 3-story Building with Piping System

Multi-Directional Large-Scale Real-Time Hybrid Simulation

Multi-Directional Large-Scale Real-Time Hybrid Simulation of 3-story Building with Piping System RTHS: 1994 Northridge EQ, Canogo Park (MCE)

NEES

Self Centering Steel Moment-Resisting Frame (SC-MRF) Systems Princeton, Purdue, Lehigh, NCREE

Large-Scale Hybrid Simulation

6-story : 6 bays @ 30 ft = 180 ft

Plan of Prototype Building

SC-MRF Experimental Substructure (Floor Diaphragm, Gravity System, Mass, Inherent Damping in Analytical Substructure)

NEES

Self Centering Steel Moment-Resisting Frame (SC-MRF) Systems Princeton, Purdue, Lehigh, NCREE

Large-Scale Hybrid Simulation (SC-MRF)

Self Centering Steel Concentrically-Braced Frame (SC-CBF) Systems Princeton, Purdue, Lehigh, NCREE

Large-Scale Hybrid Simulation

Plan of Prototype Building

SC-CBF Experimental Substructure (Floor Diaphragm, Gravity System, Mass, Inherent Damping in Analytical Substructure)

NEES

Large-Scale Hybrid Simulation (SC-CBF)

Fri Feb.5,2010 09:36:55

Predefined Displacement Dynamic Testing for Characterization

LSS

REAL-TIME MULTI-DIRECT

Large-Scale Real-Time Hybrid Simulation

NEES

Large-Scale Real-Time Hybrid Simulation

(MRF, Floor Diaphragm, Gravity System, Mass, Inherent Mass in Analytical Substructure)

Large-Scale Real-Time Hybrid Simulation

(Floor Diaphragm, Gravity System, Mass, Inherent Mass in Analytical Substructure)

Experimental Substructure: MRF and Braced Frame with Dampers

Impact Forces from Tsunami-Driven Debris University of Hawaii, Oregon State University, Lehigh

Dynamic Testing (Impact Loading)

Test Setup with Cargo Shipping Container Debris

High Speed Video of Impact of Cargo Shipping Container on Structure

Post-Tensioned Coupled Shear Wall System Notre Dame, University of Texas at Tyler

Complex Large-Scale Predefined Multi-Directional Force & Displacement (Quasi-Static) Testing

becimen with multi-directional story building simulated with

RC coupled shear wall test specimen with multi-directional loading. Upper 5 stories of 8-story building simulated with vertical force-controlled actuators. 1 displacement-controlled and 10 force-controlled (11 total) used for test.

Joint strains measured by DIC (S. Pakzad)

RC coupled shear wall pier vertical deformation measured by Digital Image Correlation (DIC) (M. McGinnis)

Post-Tensioned Coupled Shear Wall System Notre Dame, University of Texas at Tyler

Complex Large-Scale Predefined Multi-Directional Force & Displacement (Quasi-Static) Testing

Inertial Force Limiting Floor Anchorage Systems for Buildings University of Arizona, UCSD, Lehigh

Predefined Displacement Dynamic Testing for Characterization

Friction Device for Floor Anchorage

BRB was also Studied

Floor Anchorage Hysteretic Response

Inertial Force Limiting Floor Anchorage Systems Buildings University of Arizona, UCSD, Lehigh

Complimentary Shake Table Tests at NHERI UCSD

EQ 14: Berkeley MCE - Floor 4

Project	Capability		
Semi-Active Controlled Panel Cladding to Improve the Performance of Buildings under Multiple Hazards: Iowa State University (S. Laflamme)	Real-time hybrid simulation		
Passive Controlled Panel Cladding to Improve the Performance of Buildings under Multiple Hazards: Lehigh University (J. Ricles, S. Quiel)	Real-time hybrid simulation		
Development and Validation of Resilience-Based Seismic Design Methodology for Tall Wood Buildings (<i>Non-Structural System</i>): University of Nevada, Reno (Keri Ryan)	Complex predefined multi-directional displacement quasi-static testing		
Development and Validation of Resilience-Based Seismic Design Methodology for Tall Wood Buildings (<i>Structural System</i>): Lehigh University (J. Ricles, R. Sause)	Complex predefined multi-directional displacement quasi-static testing; multi-directional hybrid simulation		
Advancing Knowledge on the Performance of Seismic Collectors in Steel Building Structures: University of Arizona (R. Fleischman (PI) with CM. Uang (UCSD), J. Ricles, R. Sause (Lehigh University))	Complex large-scale predefined force and displacement quasi-static testing		
Frame-Spine System with Force-Limiting Connections for Low- Damage Seismic-Resilient Buildings: University Illinois Urbana- Champaign (L. Fahnestock (PI), B. Simpson (OSU), R. Sause, J. Ricles (Lehigh University))	Multi-directional quasi-static and hybrid simulation		
Multi-Hazard RTHS Studies of Tall Buildings with Response Modification Devices – NHERI Lehigh Capacity Building (NHERI Lehigh Staff)	Multi-directional Real-time hybrid simulation, online real-time model updating, machine-learning computational modeling		

DE

Collaborative Research: Semi-Active Controlled Panel Cladding to Improve the Performance of Buildings under Multiple Hazards: (CMMI 1463252) **Iowa State University (Simon Laflamme)**

Features Using NHERI Lehigh Underlined

- Project Overview
 - Improve performance of buildings for multiple hazards using <u>semi-active controlled variable friction cladding panel connectors</u>
 - Hazards: Earthquake, Wind (NHERI UF), Blast Loading
- Project Scope
 - Design cladding connectors and control laws
 - Construct prototype connector, perform characterization testing
 - Perform large-scale RTHS to validate numerical models and results (450 data sets from RTHS uploaded to DesignSafe to date)

Semi-Active Controlled Variable Friction Cladding Connector

Dynamic Numerical Models

Collaborative Research: Development and Validation of Resilience-Based Seismic Design Methodology for Tall Wood Buildings: (CMMI 1635363) University of Nevada, Reno (Keri Ryan) Features Using NHERI

- **Project Overview** •
- Lehigh Underlined > Develop seismic design methodology for tall wood buildings with high-performance structural and non-structural systems
 - > Determine partition wall configurations for large lateral drift with minimized partition damage
- **Project Scope** •
 - Conduct <u>large-scale</u> tests of partition wall systems under <u>in-plane &</u> out-of-plane (bi-directional) loading (& associated vertical motion)
 - Consider different partition slip track and other details to minimize damage

Test setup for partition wall testing

Test Phases	Objectives
Phase I.1-NS	Two independent flat partition walls tested to characterize slip behavior of different slip track details and measure forces in walls under bidirectional loading
Phase I.2-NS	Two independent C-shaped partition walls tested to characterize deformability with different details and measure forces in walls under bidirectional loading
Phase III-NS	Partition walls with dense layout tested under bidirectional loading

Test plan for partition wall testing

Test setup for partition wall testing

Collaborative Research: Development and Validation of Resilience-Based Seismic Design Methodology for Tall Wood Buildings: (CMMI 1635227) Lehigh University (James Ricles, Richard Sause)

Project Overview

Features Using NHERI Lehigh Underlined

- Develop seismic design methodology for tall wood buildings with high-performance structural and non-structural systems
- Study self-centering rocking cross-laminated timber (SC-CLT) wall with diaphragm and and another local another
- Project Scope
 - Conduct <u>large-scale</u> tests out-of-plane (bi-direction;
 - Project is supporting wor table tests (CSM, S. Pei)

Test setup for subassembly testing

Results of test specimen components are used for design of 10-Story CLT building shake table test specimen at University of California San Diego (UCSD) – led by Shiling Pei, University of Colorado School of Mines

Development and Validation of Resilience-Based Seismic Design Methodology for Tall Wood Buildings

Alia Amer – PhD Graduate Research Assistant, Lehigh University

Test setup for subassembly testing

Development and Validation of Resilience-Based Seismic Design Methodology for Tall Wood Buildings

SC-CLT Wall Components

September 2019

NHERI_LEHIGH TallWood Project

Gravity-Beam-to-Column Connection

- 7% in-plane deformation before contact
- 2.3% out-of-plane free rotation

Actuator Displacements

Plane View of Floor Diaphragm

Tracking Multi-directional motions of Test Specimen

- ➤ Tracking of displaced position
 - ➤ Master Structural Node (MSN)
 - > Exact solution of based on triangularization using sensor arrangement
 - Law of cosines and sines

Vertical Displacement AZ M.FN. Lanew M₁SNy_{new}, M₁SNz_{new} $\Phi_{new} = f(L_{a,new}, L_{c,new}, L_z)$ $\beta_{new} = f(L'_{a.new}, L'_{h.new}, L_x)$ Local in-plane displacement of M₁SN $M_1 SNx_{new} = L'_{a_new} \cos(\beta_{new})$ $M_1 SNy_{new} = -L'_{a_n new} \sin(\beta_{new})$

• Displaced position of M₁SN in Global Reference Coordinates

$$M_{1}SNX = M_{1}SNx_{new} + M_{1}FN_{1}X$$
$$M_{1}SNY = M_{1}SNy_{new} + M_{1}FN_{1}Y$$

Development and Validation of Resilience-Based Seismic Design Methodology for Tall Wood Buildings

Experimental Substructure (0.625-Scale)

South Wall Panel

S

North Wall Panel

Advancing Knowledge on the Performance of Seismic Collectors in Steel Building Structures: (CMMI 1662816) **University of Arizona (Robert Fleischman (PI), Chia-Ming Uang, James Ricles, Richard Sause)**

Frame-Spine System with Force-Limiting Connections for Low-Damage Seismic-Resilient Buildings: University of Illinois (Larry Fahnestock (PI), OSU (Barbara Simpson), Lehigh (Richard Sause and James Ricles)

Project Overview

Features Using NHERI Lehigh Underlined

- Develop novel steel frame-spine lateral-force-resisting system with force-limiting connections to protect building from damaging lateral drift and accelerations, providing resilient structural and nonstructural building performance
- FE analyses, <u>large-scale component tests</u>, and shake-table tests of building
- Project Scope
 - Conduct <u>large-scale</u> tests on connections at Lehigh
 - FE models at OSU, design studies at UIUC, and shake table tests at E-Defense (NHERI/E-Defense MOU).

Connection Component Testing at NHERI Lehigh

E-Defense Shake Table Testing

Multi-hazard RTHS of a Tall Building

Outriager

- 40-story (+4 basement) BRBF building in Los Angeles designed by SGH⁽¹⁾ for PEER Tall Building Initiative case studies – BRBFs with Outriggers
- **Project Objectives**
 - Improve performance using nonlinear fluid viscous dampers with outriggers
 - Assess performance of structure under multi-hazards using RTHS
- **Project Scope**

 \geq

- \blacktriangleright Extend MKR- α integration algorithm and ATS actuator control to wind natural hazard
- Real-time Online model updating explicit-based NL Maxwell model NI \geq

Al-Subaihawi, S., Kolay, C., Thomas Marullo, Ricles, J. M. and S. E. Quiel, "Assessment of Wind-Induced Vibration Mitigation in a Tall Building with Damped Outriggers Using Real-time Hybrid Simulations," Engineering Structures, accepted for preparation, 2019. Kolay, C., Al-Subaihawi, S., Thomas Marullo, Ricles, J. M. and S. E. Quiel, "Multi-Hazard Real-Time Hybrid Simulation of a Tall Building with Damped Outriggers," International Journal of Lifecycle Performance Engineering, accepted for preparation, 2019.

Multi-Hazard RTHS of Tall Building – EQ & Wind

- Bidirectional EQ ground motions
 - 1989 Loma Prieta EQ Saratoga Aloha Ave Station scaled to MCE (2500 year return period) hazard level
- Bidirectional wind loading
 - Wind speed of 110 mph, 700 MRI
 - Exposure B

Wind Loading Aerodynamic Wind Testing @ FIU WOW

• Aerodynamic wind testing at the NHERI FIU WOW to obtain wind pressure time histories distributed on the building.

Courtesy: Amal Elawady and Arindam Chowdhury, FIU

RTHS Configuration

- Use of:
 - > Explicit MKR- α Integration Algorithm
 - Adaptive Time Series Compensator for Actuator Control
 - Online Model Updating (OMU) explicit-based NL Maxwell model
 - Explicit Force-based Nonlinear Fiber Element Analytical Substructure

MKR- α parameter and ATS coefficients

Natural Time Step,		0	ATS Coefficients			Commonto
Hazard ∆t (sec)	$oldsymbol{p}_{\infty}$	a_{0k}	a_{1k}	a_{2k}	Comments	
Wind	$\frac{6}{1024}$	0.866	Fixed	Adaptive	Fixed	Wind: static component with dynamic gusts - 1 st mode linear response
EQ	$\frac{6}{1024}$	0.50	Adaptive	Adaptive	Adaptive	EQ: Multi-mode non- linear response

RTHS Substructures

Analytical Sub. Key features:

- 7902 DOF
- 2974 Elements
 - > 2411 Nonlinear Explicit Force-based fiber elements
 - 11 Nonlinear Explicit Maxwell Elements⁽¹⁾ with <u>real-time on-line</u> <u>model updating</u> (dampers placed in each outrigger at 20th, 30th, & 40th floors)
 - 552 Nonlinear truss elements
- Reduced Order Modeling
- Geometric nonlinearities
- Mass
- Inherent damping of building

⁽¹⁾ Al-Subaihawi, S. (2020). *Real-time Hybrid Simulation of Complex Structural Systems Subject to Multi-Hazards*. PhD Dissertation, CEE Dept., Lehigh University.

Real-time Hybrid Simulation with Online Model Updating – Unscented Kalman Filter (UKF)

- Real-time Model Updating
 - > 40th story @ S-E corner: damper modeled physically
 - Remaining 11 dampers at 20th, 30th, and 40th stories modeled numerically with real-time model updating
 - Use real-time model updating via <u>Unscented Kalman</u> <u>Filter (UFK)</u> to numerically model the 11 dampers
 - Development of explicit, non-iterative Nonlinear Maxwell Damper Model for real-time hybrid simulation
 - Development of methodology to tune and implement the UKF for real-time identification of nonlinear viscous dampers

Al-Subaihawi, S. (2020). *Real-time Hybrid Simulation of Complex Structural Systems Subject to Multi-Hazards*. PhD Dissertation, CEE Dept., Lehigh University.

Real-time Hybrid Simulation with Online Model Updating – Unscented Kalman Filter (UKF)

3-D Real-time Hybrid Simulation 1989 Loma Prieta EQ Bidirectional Ground Motions Scaled to MCE

Al-Subaihawi, S., Marullo, T., Cao, L., Kolay, C. and J.M. Ricles, (2019) "3D Multi-Hazard Real-Time Hybrid Simulation Studies of a Tall Building with Damped Outriggers".

3-D Real-time Hybrid Simulation 110 mph, 700 MRI Wind Storm (EW Windward Direction)

Al-Subaihawi, S., Marullo, T., Cao, L., Kolay, C. and J.M. Ricles, (2019) "3D Multi-Hazard Real-Time Hybrid Simulation Studies of a Tall Building with Damped Outriggers".

3-D RTHS Results: Roof RMS Lateral Accelerations East to West 110 mph, 700 Year MRI Wind

RMS Roof Accelerations (mG)				
Floor	No Dampers		With Dampers	
	EW	NS	EW	NS
40	7.0	31.5	6.9	16.2

Peak Roof Accelerations (mG)					
Floor	No Dampers		With Dampers		
	EW	NS	EW	NS	
40	28.8	90.3	25.8	59.0	

Dampers added to outriggers at 20th, 30th, and 40th stories:

- RMS Acceleration: 2% reduction in EW, 49% reduction in NS
- Peak Acceleration: 10% reduction in EW, 35% reduction in NS

Note: Outrigger frames are in NS direction

Building Roof Accelerations and Damper Force -<u>700 Year MRI Wind</u>

- The frequency decomposition of the recorded roof accelerations shows that they are dominated by the response of the 1st mode (translational mode orthogonal to windward direction)
- The frequency decomposition of the 40th story damper force has primary contribution from 1st mode (in plane of the outrigger frames)

Frequency Decomposition of Roof Displacement and Damper Force

3-D RTHS Results: BRB Maximum Ductility 1989 Loma Prieta EQ Scaled to MCE

BRB Maximum Ductility Demand ($\Delta_{b}^{max}/\Delta_{y}$)				
Story	No Dampers		With Dampers	
	EW	NS	EW	NS
1	3.2	3.0	3.2	2.1

Dampers added to outriggers at 20th, 30th, and 40th stories:

 BRB ductility demand: Minimal reduction in EW, 30% reduction in NS Note: Outrigger frames are in NS direction

Building Roof Displacements and Damper Force – Loma Prieta EQ scaled to MCE

- The frequency decomposition of the recorded roof displacements shows that they are dominated by the response of the 1st and 2nd modes (translational modes in NS & EW directions)
 - Inelastic displacement is evident in frequency decomposition.
- The frequency decomposition of the 40th story damper force has considerable contribution from higher modes

 1st and 4th modes are in NS direction 2nd and 5th modes are

- in EW direction
- 3rd and 6th modes are torsional modes

Frequency Decomposition of Roof Displacement and Damper Force

Real-Time Multi-Directional Testina Facility

REAL-TIME MULTI-DIR

LSS

Damper Hysteretic Response – 700 MRI Wind

40th Story @ SE: Experimental Substructure All other dampers: Real-time Model Updating is UKF

LSS

REAL-TIME MULTI-DIRECTIONAL SIMULATION

UNI

S

NHERI

Real-Time Multi-Directional Testing Facility

Damper Hysteretic Response – EQ MCE Level

All other dampers: Real-time Model Updating is UKF

LSS

REAL-TIME MULTI-DIRECTIONAL SIMULATION

UNI

FR

SIT

HER

Real-Time Multi-Directional Testing Facility

Online Model Updating – UKF Variation of Nonlinear Maxwell Model Parameters

LSS

Actuator Control – Loma Prieta EQ @ MCE RTHS

LSS

REAL-TIME MULTI-DIREC

Synchronized Subspace Plots: Target vs. Measured Displacement

Time History of Adaptive Coefficients – 40th Story Damper

Real-Time Multi-Directional Testing Facility

Amplitude Correction

$$A_k^{(j)} \approx \frac{1}{a_{0k}^{(j)}} = 0.982 \sim 1.01$$

 $\frac{\text{Delay Compensation}}{\tau_k^{(j)} \approx \frac{a_{1k}^{(j)}}{a_{0k}^{(j)}} = 16 \sim 53 \text{ msec}$

Actuator Control – 700 MRI Wind RTHS

Synchronized Subspace Plots: Target vs. Measured Displacement

UNI

LSS

REAL-TIME MULTI-DIREC

<u>Time History of Adaptive Coefficients – 40th Story Damper</u>

Real-Time Multi-Directional Testing Facility

$$A_k^{(j)} \approx \frac{1}{a_{0k}^{(j)}} = 1.0$$

Delay Compensation

$$au_k^{(j)} pprox rac{a_{1k}^{(j)}}{a_{0k}^{(j)}} = 15 \sim 32 \; \mathrm{msec}$$

51

Researcher Opportunities: Payload Projects

- Payload project opportunities through NSF funding
 - Consult NHERI Lehigh webpage for current projects
 - NHERI Lehigh staff will work with you and PIs of existing project to develop payload project

https://lehigh.designsafe-ci.org/protocols/payload-project-protocol/

Thank You

