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NHERI Lehigh EF Capabilities for Natural
Hazards Engineering Research

Large-Scale Hybrid Simulation

Large-Scale Real-Time Hybrid
Simulation

Large-Scale Real-Time Hybrid
Simulation with Multiple Experimental
Substructures

Geographically Distributed Hybrid
Simulation

Geographically Distributed Real-time
Hybrid Simulation

Predefined Load or Displacement
(Quasi-Static or Dynamic) Testing

Dynamic Testing

Real-time Hybrid Simulation with On-
Line Model Updating, Machine-learning
based computational modeling




Example Past Projects

_______ Experiment Capability

3-story building with piping system

Self-centering moment-resisting frame (SC-MRF)

Self-centering concentrically-braced frame (SC-CBF)

Real-time testing of structures with dampers

Seismic hazard mitigation using passive damper
systems

Tsunami-driven debris
Post-tensioned coupled shear wall system

Inertial force-limiting floor anchorage systems for
buildings

Cross-Laminated Rocking Wall-Floor Diaphragm
Systems

UNITVERSTITY. SN RcALTIHE HULTEDIREGTIONAL SIMULATION
NATURAL HATARDS ENGINEERING RESCARCH INFRASTRUCTURE

A

Multi-directional real-time hybrid simulation
Large-scale hybrid simulation
Large-scale hybrid simulation

Large-scale real-time hybrid simulation with
multiple experimental substructures

Predefined displacement dynamic testing (for
characterization)
Large-scale real-time hybrid simulations

Dynamic testing (impact loading)

Complex large-scale multi-directional predefined
force and displacement quasi-static testing

Predefined displacement dynamic testing (for
characterization)

Multi-directional quasi-static and hybrid
simulation

ML @ DESIGNSAFE-CI




Multi-Directional Large-Scale Real-Time Hybrid Simulation of 3-story
Building with Piping System

Multi-Directional Large-Scale Real-Time Hybrid Simulation

3-story MRF

Piping system

Experimental
Substructure

de

1

Analytical
Substructure




Multi-Directional Large-Scale Real-Time Hybrid Simulation of 3-story
Building with Piping System
RTHS: 1994 Northridge EQ, Canogo Park (MCE)
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Self Centering Steel Moment-Resisting Frame (SC-MRF) Systems
Princeton, Purdue, Lehigh, NCREE

Large-Scale Hybrid Simulation
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Plan of Prototype Building  Inherent Damping in Analytical Substructure)
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Self Centering Steel Moment-Resisting Frame (SC-MRF) Systems
Princeton, Purdue, Lehigh, NCREE
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Large-Scale Hybrid Simulation (SC-MRF)
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Self Centering Steel Concentrically-Braced Frame (SC-CBF) Systems
Princeton, Purdue, Lehigh, NCREE

Large-Scale Hybrid Simulation
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Large-Scale Hybrid Simulation (SC-CBF)

- SC-CBF Floor Displacements over Time
16 — :

——Floor 1

—Floor 2

~——Floor 3
10 ——Floor 4 |1

Floor Displacement (in)
o

-10!

-16. - -
0 10 20
Time (sec)

1 : i
calonl ol : '
1)
\ '
) ’_,“l
"-

South Base North Base




Seismic Hazard Mitigation in New Buildings Using Supplemental
Passive (Nonlinear Viscous) Damper Systems
Cal State Pomona, Cal State Northridge, Lehigh

Predefined Displacement Dynamic Testing for Characterization

E e

Damper force (kN)

600 —

P

400f -/ ff'“:w
2001 /7 \L
| f=05Hz | =15HZ b
U f=1.0Hz ~f=20Hz 7~/ ]
100 ) ERU. NS S Sy e
400 - et

500 (b) T

60 -40 -20 0 20 40 60

Damper deformation (mm)

Damper force - deformation

Actuator stroke (inches)
o

Damper force (kN)

o
3]

'
N

N
o
o

2 ramp up
qLcycles
|

|
05F -\~

,,,,,,,,,,,,,,

| Tstablefuleydes . oygles
|

,,,,,,,,

3 ramp down

Damper velocity (mm/s)

Damper force - velocity

6 12
Time (s)
500 Loading protocol
f=4.0 HZ
f=3.0 HZ
400 f=2.0 HZ y
f=1.5 HZ
200 f=1.0 HZ fp
f=0.5 HZ HR i
¢ f=0.25 HZ //
200 Jig
N 4
400 d
-600
-800 -400 0 400 800



Seismic Hazard Mitigation in New Buildings Using Supplemental
Passive (Nonlinear Viscous) Damper Systems
Cal State Pomona, Cal State Northridge, Lehigh

Large-Scale Real-Time Hybrid Simulation

| | S | Steel MRF with Passive Dampers
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6-story : 6 bays @ 30 ft = 180 ft
Plan of Prototype Building
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Seismic Hazard Mitigation in New Buildings Using Supplemental
Passive (Nonlinear Viscous) Damper Systems
Cal State Pomona, Cal State Northridge, Lehigh

Large-Scale Real-Time Hybrid Simulation
(MREF, Floor Diaphragm, Gravity System, Mass, Inherent Mass in Analytical Substructure)
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Seismic Hazard Mitigation in New Buildings Using Supplemental
Passive (Nonlinear Viscous) Damper Systems
Cal State Pomona, Cal State Northridge, Lehigh

Large-Scale Real-Time Hybrid Simulation
(Floor Diaphragm, Gravity System, Mass, Inherent Mass in Analytical Substructure)

Experimental Substructure: MRF and Braced Frame with Dampers



Impact Forces from Tsunami-Driven Debris
University of Hawaii, Oregon State University, Lehigh

Dynamic Testing (Impact Loading)

Test Setup with Cargo Shipping High Speed Video of Impact of Cargo
Container Debris Shipping Container on Structure

NEES



Post-Tensioned Coupled Shear Wall System
Notre Dame, University of Texas at Tyler

Complex Large-Scale Predefined Multi-Directional Force & Displacement (Quasi-Static) Testing

FANLEe ST W

RC coupled shear wall test specimen with multi-directional
loading. Upper 5 stories of 8-story building simulated with

i - RC coupled shear wall pier vertical
vertical force-controlled actuators. 1 displacement-controlled deformation measured by Digital Image

and 10 force-controlled (11 total) used for test. Correlation (DIC) (M. McGinnis)

NEES



Post-Tensioned Coupled Shear Wall System

Notre Dame, University of Texas at Tyler
Complex Large-Scale Predefined Multi-Directional Force & Displacement (Quasi-Static) Testing
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Inertial Force Limiting Floor Anchorage Systems for Buildings
University of Arizona, UCSD, Lehigh

Predefined Displacement Dynamic Testing for Characterization

Flo8r System

Floor Anchorage Hysteretic Response

Friction 1500
Device for 15%0: |
750 ‘
Floor z S0
=% 250
Anchorage g 0
i 5 -250 ¢
i, =500+
-750 ¢ D z
BRB was 15% — FD+R
also %00 75 S0 25 0 25 s0 Bs 100
Studied Deformation [mm]




Inertial Force Limiting Floor Anchorage Systems Buildings

University of Arizona, UCSD, Lehigh

Complimentary Shake Table Tests at NHERI UCSD
]

EQ 14: Berkeley MCE - Floor 4

Foree [kips]
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Delormzlion )

THEUMERTY @ UCSanDiego (o LEHIGH




Current Projects at NHERI Lehigh EF
. Project | Capability

Semi-Active Controlled Panel Cladding to Improve the Performance Real-time hybrid simulation

of Buildings under Multiple Hazards: lowa State University (S.
Laflamme)

Passive Controlled Panel Cladding to Improve the Performance of
Buildings under Multiple Hazards: Lehigh University (J. Ricles, S.
Quiel)

Development and Validation of Resilience-Based Seismic Design
Methodology for Tall Wood Buildings (Non-Structural System):
University of Nevada, Reno (Keri Ryan)

Development and Validation of Resilience-Based Seismic Design
Methodology for Tall Wood Buildings (Structural System): Lehigh
University (J. Ricles, R. Sause)

Advancing Knowledge on the Performance of Seismic Collectors in
Steel Building Structures: University of Arizona (R. Fleischman (PI)
with C.-M. Uang (UCSD), J. Ricles, R. Sause (Lehigh University))

Frame-Spine System with Force-Limiting Connections for Low-
Damage Seismic-Resilient Buildings: University lllinois Urbana-
Champaign (L. Fahnestock (PI), B. Simpson (OSU), R. Sause, J.
Ricles (Lehigh University))

Multi-Hazard RTHS Studies of Tall Buildings with Response
Modification Devices — NHERI Lehigh Capacity Building (NHERI
Lehigh Staff)

) D v
LEHIG >
UNIVERSTITY S 3 ‘-"‘ : A‘ ; )
J 1 - 2 e REALTIME MULTI-DIRECTIONAL SIMULATION
WATURAL HAZAROS ENGIVEERING RESEARCH WFRESTRUETURE L 2

TURAL HATARD:

Real-time hybrid simulation

Complex predefined multi-directional
displacement quasi-static testing

Complex predefined multi-directional
displacement quasi-static testing; multi-
directional hybrid simulation

Complex large-scale predefined force and
displacement quasi-static testing

Multi-directional quasi-static and hybrid
simulation

Multi-directional Real-time hybrid
simulation, online real-time model updating,
machine-learning computational modeling

SNSAFE-C




Current Projects at NHERI Lehigh EF

Collaborative Research: Semi-Active Controlled Panel Cladding to
Improve the Performance of Buildings under Multiple Hazards: (CMMI

1463252) lowa State University (Simon Laflamme) .. . Using NHERI

Lehigh Underlined

* Project Overview
» Improve performance of buildings for multiple hazards using semi-
active controlled variable friction cladding panel connectors
» Hazards: Earthquake, Wind (NHERI UF), Blast Loading
* Project Scope
» Design cladding connectors and control laws
» Construct prototype connector, perform characterization testing
» Perform large-scale RTHS to validate numerical models and
results (450 data sets from RTHS uploaded to DesignSafe to date)

Semi-Active Controlled Variable Friction Cladding Connector Dynamic Numerical Models



Current Projects at NHERI Lehigh EF

Collaborative Research: Development and Validation of Resilience-Based
Seismic Design Methodology for Tall Wood Buildings: (CMMI 1635363)
University of Nevada, Reno (Keri Ryan) Features Using NHERI

Lehigh Underlined

« Project Overview
» Develop seismic design methodology for tall wood buildings with
high-performance structural and non-structural systems
» Determine partition wall configurations for large lateral drift with
minimized partition damage
* Project Scope
» Conduct large-scale tests of partition wall systems under in-plane &
out-of-plane (bi-directional) loading (& associated vertical motion)
» Consider different partition slip track and other details to minimize
damage

Test Phases Objectives

Two independent flat partition walls tested to characterize slip behavior of
Phase I.1-NS  different slip track details and measure forces in walls under bidirectional
loading

Two independent C-shaped partition walls tested to characterize deformability

A LS with different details and measure forces in walls under bidirectional loading

Phase IlI-NS  Partition walls with dense layout tested under bidirectional loading

Test setup for partition wall testing Test plan for partition wall testing



Current Projects at NHERI Lehigh EF
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Current Projects at NHERI Lehigh EF

Collaborative Research: Development and Validation of Resilience-
Based Seismic Design Methodology for Tall Wood Buildings: (CMMI
1635227) Lehigh University (James Ricles, Richard Sause)

. ) Features Using NHERI
* Project Overview Lehigh Underlined

» Develop seismic design methodology for tall wood buildings with
high-performance structural and non-structural systems
» Study self-centering rocking cross-laminated timber (SC-CLT)

wall with diaphragm and ~-~ '~~~ = =%--- -
* Project Scope lat e
> Conduct large-scale tests Gravy T | EX
out-of-plane (bi-direction: —— EE )
» Project is supporting wor
table tests (CSM, S. Pei) | o™
- | TestPhase | o O o L]
Phase | NHERI@UCSD Shake Table Monolithic and Segmental
Phase I.1-S
Phase 1.2-5 > Results of test specimen components are used
Phase ll for design of 10-Story CLT building shake table
Phase Il.1-S test specimen at University of California San
FUEED RS Diego (UCSD) — led by Shiling Pei, University of
Phase il Colorado School of Mines

Test setup for subassembly testing



Development and Validation of Resilience-Based Seismic
Design Methodology for Tall Wood Buildings

Alia Amer — PhD Graduate Research Assistant, Lehigh University

Test setup for subassembly testing



Development and Validation of Resilience-Based Seismic Design
Methodology for Tall Wood Buildings
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SC-CLT Wall Components
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Gravity-Beam-to-Column Connection

East Elevation View of Middle Column
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Actuator Displacements
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Tracking Multi-directional motions of Test Specimen

» Tracking of displaced position —
» Master Structural Node (MSN)
» Exact solution of based on triangularization using sensor arrangement

» Law of cosines and sines

Sensors Arrangement for M,SN

Vertical Displacement

M,FN;

= L

M 1SNynewf MISNZnew

cDnewzf (La,ne-W/ L(.‘,IIEW’ LJ

Boew=H(L s news L'y news L)

* Local in-plane displacement of M,SN

MlsaneW = L,a new cos(Bnew)

MlsNynew = _L,a’ new Sin(Bnew)

Planar displacement
Lx

/MjFNZ
N Lao
Initial ~ —_ o S
configuration \ /LU
of sensors \ Enew
 d
/ _—Displaced
(M;SNxo,M;SNyo) /" configuration

of sensors

!

>
< 25 -»/"(Mw SNXnew ,M18Nynew )

 Displaced position of M,;SN in
Global Reference Coordinates

M,SNX = M,SNx,,, + M,FN,X

M,SNY = M,SNy, ., + M,FN,Y




Development and Validation of Resilience-Based Seismic
Design Methodology for Tall Wood Buildings

Experimental Substructure (0.625-Scale) South Wall Panel North Wall Panel
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Current Projects at NHERI Lehigh EF

Advancing Knowledge on the Performance of Seismic Collectors in Steel
Building Structures: (CMMI 1662816) University of Arizona (Robert
Fleischman (PIl), Chia-Ming Uang, James Ricles, Richard Sause)

i i Features Using NHERI
* Project Overview

Lehigh Underlined
» Investigate failure-critical seismic collector steel seismic force
resisting system

» FE analyses, large-scale tests and shake-table tests of floor
diaphragms and collectors
* Project Scope
> Large-scale (1000k axial fo UCSD Shake.

connections (tension/comp| Table Test
» FE models and studies of ¢

shake table tests at NHERI

Collector Line
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Current Projects at NHERI Lehigh EF

Frame-Spine System with Force-Limiting Connections for Low-Damage
Seismic-Resilient Buildings: University of lllinois (Larry Fahnestock (Pl),

OSU (Barbara Simpson), Lehigh (Richard Sause and James Ricles)
_ _ Features Using NHERI
* Project Overview Lehigh Underlined

» Develop novel steel frame-spine lateral-force-resisting system with
force-limiting connections to protect building from damaging lateral
drift and accelerations, providing resilient structural and non-
structural building performance

» FE analyses, large-scale component tests, and shake-table tests of
building

* Project Scope

» Conduct large-scale tests on connections at Lehigh

» FE models at OSU, design studies at UIUC, and shake table tests at
E-Defense (NHERI/E -Defense MOU)

[1] Base System: moment frame, gravity system,
building mass and nonstructural ¢ lmponcm

[3] Force-Limiting Connections (FLC) options m, |[Nenstructural

T (se
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Connection Component Testing at NHERI Lehigh E- Defense Shake Table Testlng
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Multi-hazard RTHS of a Tall Building

» 40-story (+4 basement) BRBF building in Los Angeles designed by SGH(")
for PEER Tall Building Initiative case studies — BRBFs with Outriggers

* Project Objectives
» Improve performance using nonlinear fluid viscous dampers with

outriggers Do Y
> Assess performance of structure under multi-hazards using RTHS 2“9 ' CINCL

* Project Scope
» Extend MKR-a integration algorithm and ATS actuator control to

wind natural hazard

1
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> Real-time Online model updating — explicit-based NL Maxwell model . L \ ,
» Machine Learning-based computational modeling \E/)Ias;(:)uesrs AL 2 |
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1) Moehle et al., PEER 2011/05  frame (BRBF) Floor Plan

Al-Subaihawi, S., Kolay, C., Thomas Marullo, Ricles, J. M. and S. E. Quiel, “Assessment of Wind-Induced Vibration Mitigation in a Tall Building
with Damped Outriggers Using Real-time Hybrid Simulations,” Engineering Structures, accepted for preparation, 2019.

Kolay, C., Al-Subaihawi, S., Thomas Marullo, Ricles, J. M. and S. E. Quiel, “Multi-Hazard Real-Time Hybrid Simulation of a Tall Building with
Damped Outriggers,” International Journal of Lifecycle Performance Engineering, accepted for preparation, 2019.



Multi-Hazard RTHS of Tall Building —
EQ & Wind

 Bidirectional EQ ground motions

» 1989 Loma Prieta EQ — Saratoga Aloha Ave Station
scaled to MCE (2500 year return period) hazard level

 Bidirectional wind loading e
> Wind speed of 110 mph, 700 MRI e SRR
» Exposure B N P

NL Viscous N BRI X
Dampers WA v A a
\l ‘.l ’(-_-‘f,‘.‘(::‘_‘ \




Wind Loading
Aerodynamic Wind Testing @ FIU WOW

* Aerodynamic wind testing at the NHERI FIU WOW to obtain wind pressure
time histories distributed on the building.

Yoii AV, V0, SV
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4 Wall of Wind™
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Courtesy: Amal Elawady
and Arindam Chowdhury, FIU



RTHS Configuration

» Use of:
» Explicit MKR-a Integration Algorithm

» Adaptive Time Series Compensator for Actuator Control
» Online Model Updating (OMU) — explicit-based NL Maxwell model
» Explicit Force-based Nonlinear Fiber Element — Analytical Substructure

MKR-a parameter and ATS coefficients

Natural Time Step ATS Coefficients
H d At ’ P Comments
azar (sec) Ao Ay Aok
6 Wind: static component
Wind — 0.866 Fixed Adaptive Fixed with dynamic gusts - 15t
1024 mode linear response
EQ _° 0.50 Adaptive Adaptive Adaptive Cov Multi-mode non-
1024 linear response




RTHS Substructures

/OUtriggefsi_\‘ Analytical Sub. Key features:
A AABESNY - 7902 DOF
-1 +2074 Elements

> 2411 Nonlinear Explicit
Force-based fiber
Ll elements

R > 11 Nonlinear Explicit

NL
Viscous
Dampers
(OMU)

=\

o 1 Y. TR A Maxwell Elements(
W e ot o /.- N ‘,\ with real-time on-line
Vi e . S N | model updating
- | o= 3 X NL -
: , Loadcell  Loading beam = = N Viscous (dampers placed in
Foundation beam = N Dampers . th
South-east damper at 40" story outrigger N (OMU) each outrlgger at 20 ,
S 30M, & 40" floors)
Experimental Substructure — | N ’ :
perimen’e N \g\ » 952 Nonlinear truss
NL Fluid Viscous Damper _ NSy
. 2 elements

* Reduced Order Modeling
» Geometric nonlinearities
* Mass

Analytical Substructure | Inherent damping of building

() Al-Subaihawi, S. (2020). Real-time Hybrid Simulation of Complex Structural Systems Subject to Multi-Hazards. PhD Dissertation,
CEE Dept., Lehigh University.



Real-time Hybrid Simulation with Online Model
Updating — Unscented Kalman Filter (UKF)

Real-time Model Updating

> 40™ story @ S-E corner: damper modeled physically

» Remaining 11 dampers at 20, 30, and 40t stories
modeled numerically with real-time model updating

» Use real-time model updating via Unscented Kalman
Filter (UFK) to numerically model the 11 dampers

» Development of explicit, non-iterative Nonlinear
Maxwell Damper Model for real-time hybrid simulation

» Development of methodology to tune and implement
the UKF for real-time identification of nonlinear

viscous dampers

Al-Subaihawi, S. (2020). Real-time Hybrid Simulation of Complex Structural Systems Subject to Multi-Hazards. PhD Dissertation,
CEE Dept., Lehigh University.




Real-time Hybrid Simulation with Online Model
Updating — Unscented Kalman Filter (UKF)

I Dampers OMU Real-time input EQ ground
l acceleration
Analytical
substructure
Cmd Displ Cmd Displ
a e Experimental
i+1 \ i+1 substructure

(damper)

Simulation Coordinator

. . a o a S-E Damper at 40" story
MX;,1 + CXiy1 + Ry + R = Fiyy gD

i+1 Integrates Eqns of Motion
Restoring Force

Real-time structural

response

(Modeled in lab)

Updated model parameters X;. 4

Xiv1 = {Kdjy1,Cdiyq, O(i+1}T

Real-time system identification using

Damper computational model h
Unscented Kalman Filter (UKF)

(Nonlinear Maxwell Model updated in real time)
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3-D Real-time Hybrid Simulation
1989 Loma Prieta EQ Bidirectional Ground Motions Scaled to MCE
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3-D Real-time Hybrid Simulation of a Seismically Excited Tall Building with NL Viscous Dampers
1989 Loma Prieta EQ Bidirectional Ground Motions Scaled to MCE Level

Al-Subaihawi, S., Marullo,T., Cao, L., Kolay, C. and J.M. Ricles, (2019) “3D Multi-Hazard Real-Time Hybrid Simulation Studies of a Tall Building

with Damped Outriggers”.
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3-D Real-time Hybrid Simulation
110 mph, 700 MRI Wind Storm (EW Windward Direction)
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3-D Real-time Hybrid Simulation of a Wind Excited Tall Building with NL Viscous Dampers
Eastern 110mph, 700 MRI Wind Storm

Al-Subaihawi, S., Marullo,T., Cao, L., Kolay, C. and J.M. Ricles, (2019) “3D Multi-Hazard Real-Time Hybrid Simulation Studies of a Tall Building

with Damped Outriggers”.



3-D RTHS Results: Roof RMS Lateral Accelerations
East to West 110 mph, 700 Year MRI Wind

RMS Roof Accelerations (mGQG)

Floor No Dampers With Dampers
EW NS EW NS
40 7.0 31.5 6.9 16.2

Peak Roof Accelerations (mG)

Floor No Dampers With Dampers
EW NS EW NS
40 28.8 90.3 25.8 59.0

Dampers added to outriggers at 20, 30", and 40th stories:
* RMS Acceleration: 2% reduction in EW, 49% reduction in NS
* Peak Acceleration: 10% reduction in EW, 35% reduction in NS

Note: Outrigger frames are in NS direction




Building Roof Accelerations and Damper Force -
700 Year MRI Wind

» The frequency decomposition of the recorded roof accelerations shows
that they are dominated by the response of the 15t mode (translational
mode orthogonal to windward direction)

« The frequency decomposition of the 40t story damper force has primary
contribution from 1st mode (in plane of the outrigger frames)
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Frequency Decomposition of Roof Displacement and Damper Force
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3-D RTHS Results: BRB Maximum Ductility
1989 Loma Prieta EQ Scaled to MCE

BRB Maximum Ductility Demand (A‘glaXIAy)

Story No Dampers With Dampers
EW NS EW NS
1 3.2 3.0 3.2 2.1

Dampers added to outriggers at 20™, 30", and 40th stories:
« BRB ductility demand: Minimal reduction in EW, 30% reduction in NS

Note: Outrigger frames are in NS direction




Building Roof Displacements and Damper Force —
Loma Prieta EQ scaled to MCE

» The frequency decomposition of the recorded roof displacements shows
that they are dominated by the response of the 15t and 2" modes
(translational modes in NS & EW directions)

> Inelastic displacement is evident in frequency decomposition.

« The frequency decomposition of the 40t story damper force has

considerable contribution from higher modes
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Damper Hysteretic Response — 700 MRI Wind
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Damper Hysteretic Response — EQ MCE Level
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Online Model Updating — UKF
Variation of Nonlinear Maxwell Model Parameters
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Actuator Control — Loma Prieta EQ @ MCE RTHS

Synchronized Subspace Plots:
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Actuator Control — 700 MRI Wind RTHS
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Researcher Opportunities: Payload Projects

[ Payload project opportunities through NSF funding
» Consult NHERI Lehigh webpage for current projects

» NHERI Lehigh staff will work with you and Pls of existing project
to develop payload project

https://lehigh.designsafe-ci.org/protocols/payload-project-protocol/

LEHIGH UNIVERSITY DESIGNSAFE Cl
EXPERIMENTAL FACILITY it o

) Facility ~ Protocols ~ Projects Resources Outreach ~ Contact

NHERI LEHIGH EF PAYLOAD PROTOCOL

Revision 0; 6/30/16.
1. All ongoing and newly funded projects at the NHERI Lehigh Experimental Facility are posted on the site’s website to enable researchers to identify potential payload project
opportunities.

2. Interested payload researchers should review the posted information for the ongoing/new project scope, schedule, and additional relevant data to determine feasibility of
proposing a payload project.

3. If additional project detail is required, payload researchers are encouraged to contact project Pl directly to foster collaboration towards the project.
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