

National Science Foundation

Modular Test Bed Building (MTB2): A Reconfigurable Shared-Use Equipment Resource for use by Researchers at LHPOST6

Gilberto Mosqueda

Machel Morrison

University of California San Diego

NHERI@UC San Diego User Training Workshop

December 15-16, 2022 University of California, San Diego

Making it Happen: Team

- University of California San Diego & University of Utah
- Industry Partners

Tara Hutchinson

Gilberto Mosqueda

Michael Morano

Louis Lin

Chris Pantelides

es Emily Diedrich

Junwei Lui

THE RESILIENT SEISMIC SOLUTION

Zane Schemmer (UCB NHERI REU) UNIVERSITY OF UTAH®

http://chei.ucsd.edu/MTB2/index.html

Additional Industry Partners

Atlas Tube

Design Scope

- Community-available building for NHERI users:
 - New infrastructure to contribute to NHERI@UC San Diego & sharedusers of NHERI EF
 - First structure to be tested on newly upgraded LHPOST6
- Evolution:
 - Community input via NHERI workshops
 - Inception from prior research & proposals to investigate NCSs
 - Partnership amongst Academe & industry
- Unique features:
 - Designed to be reconfigurable & reusable with low-cost replaceable nonlinear fuse elements and simple removable floor system
 - Enabling low-cost testing of components & systems under simulated dynamic 3D loading
 - Provide a *vehicle to deliver seismic loads & displacements* to elements of interest

Design Features

Reconfigurable 3-D full-scale three-story steel building designed to accommodate a wide range of seismic behavior of buildings:

- 1) Moment frame behavior with **shear fuse** type plastic hinges
- 2) Compliant base to alleviate moment demands at beam joints (coupled with 1)
- 3) Braced frame behavior with **buckling restrained braces** (BRBs) at built-in gusset plates at

Design Features

- All-hot rolled steel framing system
- Simple floor plan, accommodate geometry directly atop LHPOST
- Simple foundation footprint, straight-forward tiedown to LHPOST6
- Modular nonlinear fuse components
- 3-stories (can be extended)
- Modular diaphragm (attach to; remove and adapt)
- Readily de-erected and stored

νριαητι πετιπιτίοη			_
	Longitudinal LFRS		
Item	BRB-1	SMF/SMF+CB	
Transverse LFRS [k]	13.2	13.2]
Longitudinal LFRS [k]	20.5	2.5]
Steel Plate [k]	113.2	113.2]
Modular Deck [k]	38.4	38.4]
Columns + BP [k]	28.2	28.2]
Beams [k]	17.9	17.9]
Structural System [k]	231.4	213.4	-
Footings [k]	81.6	81.6]
Total Weight [k]	313	295	┥ ←

2 16'-0" 16'-0 С 5'-10" 10'-0" 20'-0" 8'-4" В 10'-0" 5'-10" А Modular floor deck (2/floor), ~6.4kips ea Steel deck plate (4/floor), ~9.5kips ea

Modular diaphragm: steel plate + concrete deck

December 15-16, 2022

University of California San Diego

MTB² Performance Range (NL Pushover Behavior)

Features of behavior

- Softer, ductile SMF response
- Softer, post-yield SMF+CB response
- Stiffest, strongest configuration BRB-1
- Consistent elastic stiffness in all BRB configurations
- ~2% roof drift capacity (@BRB PL = 2.5% ε_a)
- ~4% roof drift capacity (@SMF PL = 0.05r)
- Gradual fuse-fuse (floor-floor) progression of yielding

ETabs FE Model NL Pushover results

*Erection of MTB*²

- Erection of MTB² on the UCSD staging slab
 - Oct Nov 2021 (BRB-1, 50% bolt-up)
- Erection on Shake Table
 - May 2022
- Outcome:
 - ~2days for erection
 - ~1.5days for de-erection

December 15-16, 2022

Shake Table Test - May 2022

Modular Testbed Building (MTB²) NHERI@UC San Diego LHPOST6

Configuration SMF+CB versus BRB1 1994 Northridge Earthquake, Rinaldi Receiving Station EQ Scale Factor: 1.00X, 1.00Y, 1.00Z

JACOBS SCHOOL OF ENGINEERING Structural Engineering

Current Status

- MTB² is intended to be a community resource
- Data analysis
- Papers
- Preparation of data for publication on DesignSafe
 - Design drawings for different configurations
 - Data from experimental program
 - Numerical models
 - Jupyter Notebooks

Future Research Opportunities with MTB²

- Test nonstructural components and systems
 - Vertically spanning, e.g. stairs, cladding, elevators
 - Floor-mounted, hung (suspended)
- Protective systems (seismic solation, damping)

• BRBs, Fuse Plates, Anchors and Hardware are Consumables

• Procuring and managing erection and de-erection ~\$60-70k

- Modifications to existing frames need to be substantiated by detailed Non-linear analysis
 - New loading histories
 - Changes in structural elements (beams, columns, connections, footings, additional stories etc.)
 - Changes to magnitude or distribution of floor mass