

National Science Foundation

UC San Diego JACOBS SCHOOL OF ENGINEERING Structural Engineering

Physical modeling research strategy with examples related to liquefaction and soilstructure interaction

Bruce Kutter, Professor Emeritus University of California, Davis

Joint Researcher Workshop UC San Diego, Lehigh & SimCenter

December 16-17, 2019 University of California, San Diego

Real-Time Multi-Directional Testing Facility

University of California at San Diego

Natural Hazards Engineering Research Infrastructure

SIMCENTER COMPUTATIONAL MODELING AND SIMULATION CENTER

Advice for early and mid career physical modelers

- Pick a problem/topic
 - Important topic with funding prospects
- Bite off a piece of the big problem and test a hypothesis
- Update the problem statement and take another bite
- Be persistent
 - Maintain attention to fundamentals and rigor
 - Publish / disseminate
 - Share your data and information
 - Eventually, become an acknowledged expert

More advice for physical modelers

- Common motivations for physical model tests
 - Mechanisms can be explored with model tests
 - New or untested technologies (gaps) can be studied
 - Validation/calibration of analysis procedures and numerical methods
- Do hypothesis driven research
 - State your hypotheses
 - Don't add complexity to an experiment that detracts from focus on testing the hypotheses.
- Multiprong approach/multiprong expertise
 - Theory & Fundamental mechanics
 - Small scale experiments (materials and components)
 - Simulation $\leftarrow \rightarrow$ Experiment (validation/calibration)
 - Large scale testing (systems, proof of concept)
 - Implementation

Outline of this talk

- Picking a problem of importance
- Example 1: LEAP
- Example 2: Rocking Foundations Database
- Brainstorming new research areas
- Summary

Pick a problem with societal relevance

- Imagine new and future problems
 - Dealing with sea level rise
 - Low-lying/coastal population and infrastructure
 - Levees, waterfront structures
 - Green energy
 - Wind Farm foundations
 - Transportation

- Mass transit, high speed rail, autonomous vehicles
- Coupling with other hazards earthquake and tsunami
- Ongoing Problems: Infrastructure assessment e.g., ASCE report card
 - Existing buildings, dams, levees, ports, bridges, rail
 - Earthquake and Wind
- Overlooked problems, overdue fundamental academic problems
 - Validation of numerical methods
 - Implementation in practice
 - Accounting for uncertainty

The Effects of Climate Change

The potential future effects of global climate change include more frequent wildfires, longer periods of drought in some regions and an increase in the number, duration and intensity of tropical storms. Credit: Left - Mellimage/Shutterstock.com, center - Montree Hanlue/Shutterstock.com.

Sea level will rise from 1 to 3' by 2100

https://climate.nasa.gov/

vital-signs/sea-level/

Fragility of ice and

 ΔT ?

glaciers?

750

ASCE AMERICAN SOCIETY OF CIVIL ENGINEERS

"Never before has the future looked so exciting. From autonomous vehicles to the most cutting-edge green technologies, the built environment is reshaping before our eyes. Exciting as it is, these changes breed challenges. The future will require a new way of doing things. ASCE has launched a bold, comprehensive project to anticipate, reimagine, and prepare for future changes."

Future World Vision: Infrastructure Reimagined

May 2019

Future World Vision Example scenario

Resilient Cities

In this scenario, climate change wreaks havoc on urban and coastal cities. The increasing severity of the effects will increase the demand for substantial investments in long-term protective measures.

RESILIENT CITIES DETAILS

Malhotra, S. (2011), Selection, Design and Construction of Offshore Wind Turbine Foundations, Wind Turbines, Ibrahim Al-Bahadly (Ed.), ISBN: 978-953-307-221-0, InTech, Available from: http://www.intechopen.com/articles/show/title/selection-design-and-construction-of-offshore-windturbine-foundations

Pick a problem of societal importance

- New and future problems
 - Dealing with sea level rise
 - Low-lying/coastal population and infrastructure
 - Levees, waterfront structures, flooding frequency
 - Green energy
 - Wind Farm foundations
 - Transportation
 - Mass transit and High speed rail
 - Coupling with other hazards earthquake and tsunami
- Ongoing Problems: Infrastructure assessment e.g., ASCE report card
 - Existing and new buildings, dams and levees, ports, bridges, rail
 - Earthquake and wind
 - Fundamental mechanics
- Overlooked problems, overdue fundamental academic problems
 - Validation of numerical methods and analysis procedures
 - Implementation in practice
 - Accounting for uncertainty

ASCE infrastructure report card

Pick a problem of societal importance

- New and future problems
 - Dealing with sea level rise
 - Low-lying/coastal population and infrastructure
 - Levees, waterfront structures, flooding frequency
 - Green energy
 - Wind Farm foundations
 - Transportation
 - Mass transit and High speed rail
 - Coupling with other hazards earthquake and tsunami
- Ongoing Problems: Infrastructure assessment e.g., ASCE report card
 - Existing and new buildings, dams and levees, ports, bridges, rail
 - Earthquake and wind
 - Fundamental mechanics
- Overlooked problems, overdue fundamental academic problems
 - Validation of numerical methods and analysis procedures
 - Implementation in practice
 - Accounting for uncertainty

Examples

1. LEAP-UCD-2017 and LEAP-Asia-2019

2. Rocking foundations data bases: FoRCy and FoRDy

Example Topic 1: LEAP

48 Round-robin centrifuge model tests of liquefaction and lateral spreading: consistency of experiments and comparisons to simulations for LEAP

LEAP (Liquefaction Experiments and Analysis Projects) is an international effort to perform model tests to assess the accuracy of numerical procedures for predicting the effects of liquefaction

Acknowledgements

Trevor J Carey, Nicholas Stone, Bao Li Zheng, Andreas Gavras, Mourad Zeghal (RPI), Majid Manzari (GWU)

Experiment Teams

University of California, Davis USA Rensselaer Polytechnic Institute, USA George Washington University, USA Cambridge University, UK Na Ehime University, Japan Tok IFSTTAR, France

NSF awards: CMMI 1635307 CMMI 1635524 CMMI 1635040

KAIST, Republic of Korea SA Kansai University, Japan A Kyoto University, Japan National Central University, Taiwan Tokyo Institute of Technology, Japan Zhejiang University, P.R. China

Numerical simulation teams:

US: U. Washington, UCSD, UCD, Auburn U., Fugro Corp.
Japan: Meisosha, Shimizu, Kyoto U., Kansai U., TEPCO, FLIP consortium
China: Tsinghua U., Zhejiang University
Italy: U. Napoli
Canada: U. British Columbia

Motivation for LEAP: We do not formally know how accurate these simulations are.

Yet, we depend more and more on their accuracy!

Perlea and Beaty (2010) - Success Dam deformation contours for MCE

LEAP

- Hypothesis: If we do a lot of similar liquefaction experiments in several laboratories, we will be able to assess the accuracy/uncertainty of the physical model test data.
 - Quantitative assessments of the accuracy of a numerical procedure depend on knowing the accuracy and uncertainty of the reference experimental data.
 - To know the accuracy and uncertainty of the data, interlaboratory reproducibility must be established.
 - Since reproducibility is not perfect, we need to account for:
 - the variability of initial conditions and boundary conditions, and,
 - the sensitivity of the results to the variations of these conditions.

LEAP-GWU-2015, LEAP-UCD-2017 LEAP-Asia-2019

used the same "simple" experiment configuration: submerged sloping ground in a rigid box subject to ramped sine wave base motion

For LEAP-GWU-2015

- Attempt to duplicate the same data point on different equipment.
 - Only some results were "close enough"
 - Differences suspected to be explained by errors and equipment limitations
 - "goodness of fit": Standard Deviation

For LEAP-UCD-2017

- Embrace the variability, try to quantify variation, but also minimize and quantify uncertainty.
- Try to demonstrate a trend, not just a repeatable point
 - Sensitivity slope of the trend
- *"goodness of fit":* R²
- Multiple inputs require more dimensions
- Even the "bad tests" help define the trend

Evaluation of numerical simulations

Past validation efforts have often focused on comparisons between predictions and experiments for a single data point. Duplication of a single data point can be deceptive.

Hypothesis: It will be easier to validate simulations if we compare the experimental and simulation response functions.

Example data: pore pressures in the central array

How does the centrifuge work?

11-11-11

The centrifugal force increases the "weight" of the model to simulate weight of full scale Civil Structures

PRINCIPLE OF CENTRIFUGE MODELLING

Prototype Stress Distribution

Idea is to produce a realistic stress *and* realistic stress distribution in controlled experiments with well defined boundary conditions and well defined material properties

PRINCIPLE OF CENTRIFUGE MODELLING

Prototype Stress Distribution

Idea is to produce a realistic stress *and* realistic stress distribution in controlled experiments with well defined boundary conditions and well defined material properties

$$\sigma^* = \sigma_m / \sigma_p = 1$$

Example data: pore pressures in the central array

TestCompare - PPT - Destructive1

Underlined test names = experiments selected for Type B predictions.

Comparison of 2017 and 2019 data

Only include data from tests using conventional centrifuge scaling laws, and only tests that included cone penetration tests

LEAP-Asia-2019 R² = 0.94

Similar surfaces, but apparent improvement in testing quality

- 2017 and 2018 data
- Conventional and non conventional scaling laws.
- CPT or no CPT
- <u>45 centrifuge tests on one graph!</u>
- $R^2 = 0.80$

 B
 A
 C

 ~2
 1
 0.5
 1g scale factor

 □
 □
 □
 No CPT : Dr(M&V)

 □
 □
 □
 LEAP-Asia-2019

 □
 □
 □
 LEAP-UCD-2017

 □
 □
 deep container

 □
 shallow container

Conclusions – LEAP experiments

- The LEAP experiments are consistent with each other. The displacement response surface is correlated to the PGA and relative density with coefficient of correlation R² ~ 0.8 or greater.
- We are now able to estimate the variability of the experimental data by comparing the difference between the data and the regressed response surface
- Experimental data is published.
 - www.DesignSafe-ci.org
 - search for LEAP in Data Depot

Validation of numerical simulations of LEAP experiments

Numerical Simulation Team	Constitutive Model	Analysis Platform					
1) Tsinghua University	Tsinghua Constitutive Model	OpenSEES					
2) Meisosha Corporation	Cocktail Glass Model	FLIP Rose					
3) Shimizu Corporation	Bowl Model	HiPER					
4) University of Napoli	Hypoplastic Model	Plaxis					
5) UC Davis - Auburn University	 a) PM4Sand –Cal 1 b) PM4Sand –Cal 2 G_o larger c) PM4Sand –all Dr = 62% d) PM4Sand –even Lower Dr s) PM4Sand –corrected Dr 	FLAC-2D					
6) University of Washington	a) DM04 Model b) DM04 Model c) PM4Sand	OpenSEES OpenSEES (1D) OpenSEES (1D)					
7) Kyoto University	Cocktail Glass Model	FLIP					
8) Universidad del Norte	ISA-Hypoplasticity Model	ABAQUS					
9) Univ. British Columbia	SANISand	FLAC-3D					
10) UCSD	PDMY	OpenSEES					
11) Fugro West	a) UBCSAND b) PM4Sand	FLAC-2D					

Simulation of Element test data Dr = 50% (r = 0.19)

Ueda et al. (2019)

Here are 16 Type B predictions of one test.

Conclusions and open issues: Validation

- Matching experimental/numerical response function over a range of key input parameters is useful for assessing the quality of a simulation procedure.
 - We focused on residual displacement response surface for a lateral spreading soil in a rigid box
 - Different response quantities
 - Different BC's for lateral spreading?
 - Layering, rigid walls,
 - The LEAP database provides a solid basis for one aspect of assessment

Conclusions and open issues

- It is easier to "assess" than to "validate"
 - Validation of "model" or validation of "modeler"?
 - Same code different people give different results
 - Mistakes, lack of careful review, time limitations
 - Subjective criticism of friends and competitors
 - Objective but general metrics depend on the problem at hand.

• Validation for other liquefaction problems

- Void redistribution, flow failures, embankments
- SSI problems: e.g. downdrag on piles, tilting of buildings
- Remediation methods
- Sheet pile walls is the subject of LEAP-RPI-2020

LEAP references

https://link.springer.com/book/10.1007/978-3-030-22818-7#about

Kutter, Bruce; Zeghal, Mourad; Manzari, Majid, (2018-10-08), "LEAP-UCD-2017 Experiments (Liquefaction Experiments and Analysis Projects)", DesignSafe-CI [publisher], Dataset, doi:10.17603/DS2N10S https://doi.org/10.17603/DS2N10S

Ueda, Kyohei, (2018-12-04), "LEAP-Asia-2018: Stress-strain response of Ottawa sand in Cyclic Torsional Shear Tests", DesignSafe-CI [publisher], Dataset, doi:10.17603/DS2D40H https://doi.org/10.17603/DS2D40H

Manzari, Majid, (2018-12-04), "LEAP-2018 - Stress-strain response of Ottawa F65 sand in Cyclic

Simple Shear" , DesignSafe-CI [publisher], Dataset, https://doi.org/10.17603/DS2HX3H

ElGhoraiby, Mohamed; Park, Hanna; Manzari, Majid, (2018-10-15), "LEAP-2017 GWU Laboratory Tests", DesignSafe-CI [publisher], Dataset, doi:10.17603/DS2210X https://doi.org/10.17603/DS2210X

Vasko, Andrew; ElGhoraiby, Mohamed; Manzari, Majid, (2018-10-12), "LEAP-GWU-2015 Laboratory Tests", DesignSafe-CI [publisher], Dataset, doi:10.17603/DS2TH7Q DOI: https://doi.org/10.17603/DS2TH7Q

Trevor Carey; Bruce L Kutter; Majid T Manzari; M. Zeghal (2017), "Leap Soil Properties and Element Test Data," <u>https://datacenterhub.org/resources/leap_soil</u>

Ana Maria Parra Bastidas; R. W. Boulanger; Trevor Carey; J. DeJong (2017), "Ottawa F-65 Sand Data from Ana Maria Parra Bastidas," https://datacenterhub.org/resources/ottawa f 65.

Bruce L. Kutter Majid T. Manzari Mourad Zeghal Editors

Model Tests and Numerical Simulations of Liquefaction and Lateral Spreading

LEAP-UCD-2017

Open access!!

Den Springer Open

Example topic 2

FoRDy: Database of Rocking Shallow Foundation Performance – Dynamic Shaking

FoRCy: Database of Rocking Shallow Foundation Performance – Slow Cyclic and Monotonic Loading

Andreas G. Gavras, Bruce L. Kutter, Manouchehr Hakhamaneshi, Sivapalan Gajan, Weian Liu, Angelos Tsatsis, Keshab Sharma, Giovanna Pianese, Tetsuya Kohno, Lijun Deng, Roberto Paolucci, Ioannis Anastasopoulos, and George Gazetas

Two in-press Data Papers to appear **in EERI Spectra** within a couple months Data is already published at DataCenterHub <u>https://doi.org/10.13019/t0cq-qf64</u>. <u>https://doi.org/10.13019/3rqyd929</u>

Definition of some parameters documented in FoRCy and FoRDy

Validation database of experiments from many laboratories

Center for Geotechnical Modeling, University of California—Davis

European Laboratory for Structural Assessment, **Joint Research Centre**, Italy

Foundation Engineering Laboratory, **Public Works Research Institute**, Japan

Laboratory of Soil Mechanics, National Technical University of Athens, Greece

Large High Performance Outdoor Shake Table, University of California—San Diego

The FoRCy Mastersheet

Download XTulteroon @ Clear filters X No-Wrap
stew 100
 onters

um	Citation for data source -	н -	Co-Pfs +	Researchers •	Sponsor •	Test + Series	Test Site +	Test Type •	Cont. N. +	Cont. I. + 0	Cont, W + Co [m] [n	nt. H + Actuato	Type • N Actuators	Loading Protocol Description	Connection •	Cont. Images +	Event ID .	Test Date +	TN + P event	tecket N + J	19M + Gra	wity* • La	ength" + Mass" +	Time* • Model or Prot. Data	• Sol • Depth	Water + Depth	N Soll + Layers	Modification +	Met_L1 +	5 ¹¹ 8	r_L1 · phi_ov_L	1 · STDev_Dr_L	1 * Su_L1_1
																			pacenta						24	Uni							
low-	Citation for data source	191	Co-PTs	Researchers	Spornior	let S.	Test Site	Text Type	Cont. N.	Cart.L	Crint. W C	ont: H Actual	Type N Actuator	Loading Protocol Description	Connection	Conn. Imagin	Event ED	Test Lists	IN ma.	Packert N	RPM Gra	nety: 1	arrgih" Mass*	Time* Model or	N Sol D.	Water	N Sol .	Modification	Mat.11	H.LL I	but phiced	1 SiDev_Dr	11 54,11,1
1	Hakhamaneshi,	Bruce L. Kutter	SahiK.,	M2tekberrenishi	NSF- NEESR	MAHS-	UC Day	Contribugo	Rigid Container	0.381	0.381	25.4 arvo-h	dtaulc.	1 Slow Cyclic disp controlled Lateral Loseling	pin and	2 4	2.4_#_R_0.6	1-Aug-12	6	1	183.8	35	0.0286 0.0000233	0.0286 Model	0.15	1717	1	None	Nexada Sard	0.15	80 95	199	3 7
2	Hakhamanishi,	Bruce L. Bruce L.	Sahik.	Matakhamanahi	NEESK NSE-	MAHS-	UC Day	Contribugo	Container Rigid	0,381	0.581	25,4 servo-h	dtaukt	1 Slow Cyclic dap controlled Lateral Loading Slow Cyclic dap controlled	pin and	21	14,8,8,0.6	1-Aug-12	6	2	183.8	35	0.0286 0.0000233	0.0286 Model	0.15	1111	1	None	Nevada Nevada	0.15	80 91	292	3 7
4	Hakhamanishi,	Kutter Bruce L.	Sashi K	Mataktuenamenti	NEESR NSE-	1 MAHS-	UC Day	Contributor	Container	0.381	0.581	25.4 servo-h	draulic'	Lateral Loading Siew Cyclic dep controlled	pin and	201	14,4,8,0.6	1-Aug-12	6	4	183.8	35	0.0286 0.0000233	0.0286 Model	0.15	110	1	None	Sand	0.15	80 2	199	3 1
5	Hakhamancihi,	Bruce L. Sutter	Sashi K	Matakhamammini	NSF- NEESR	MAHS-	UC Des	Contrifuge	Rigid Container	0.381	0.381	25.4 arrvo-h	diaulic	1 Slow Cyclic ship controlled Lateral Loading	pin and	201	1.4_e_R_0.6	1-Aug-12	6	5	183.8	35	0.0286 0.0000233	0.0286 Model	0.15	1717	1	Norte	Nexada Sand	0.25	80 99	199	3 /
ó	Hakhamanishi,	Bruce L. Kutter	SahiK.	Matakhamaninhi	NSP- NEESR	MAHS- 1 MAHS	UC Day	Contrifugo	Rigid Container	0.381	0.381	25.4 serve-h	dowle	1 Slow Cyclic disp controlled Lateral Loading	pier and	98M	1.4_e_R_0.6	1-Aug-12	6	ó	1818	35	0.0286 0.0000233	0.0286 Model	0.15	1111	1	None	Nexada Sand	0.15	80 91	299	3 7
/	Hakhamanchi,	Bruce L.	SashiK.	Mitakhamanahi	NEESR NSP-	1 MAHS	UC Day.	Centrituge	Container	0.381	0.381	25.4 serve-h	draulic draulie	Lateral Loading Slow Cyclic dap controlled	pin and		145, r.R. 135	20-Jun-12	6	1	1819	35	0.0286 0.0000233	0.0286 Model	0.15	m	1	None	Sand	0.15	82 9	299	3 7
9	Hakhamameshi,	Brace L. Nutter	SahiK.,	Mittakhamanishi	NEESR NEESR	MAHS-	UC Day	Contribugo	Container Rigid Container	0.381	0.381	25.4 arvo-b	duele.	Lateral Loading Slow Cyclic disp controlled Lateral Loading	per and		1.45_s_R_1.55	20-Jun-12	6	3	183.9	35	0.0286 0.0000233	0.0286 Model	0.15	1717	1	None.	Nexatla Sand	0.15	82 9	19.9	3 7
50	Hakhamanishi,	Bruce L. Kutter	Sashi K	M.Hakhamaranahi	NSF- NEESR	MAHS-	UC Day	Contribugo	Rigid Container	0,381	0.581	25.4 serve-h	dtaukt	1 Slow Cyclic dap controlled Lateral Loading	pin and	8	1.45_F_R_1.55	20-Jun-12	6	4	1819	35	0.0286 0.0000233	0.0286 Model	0.15	1717	1	None	Nevada Sand	0.15	82 91	999	3 7
	Hakhamaneshi,	Bruce L	Sath R.	Matakhamanahi	NEE SR NSE-	1 MAHS-	UC Day.	Contribugo	Container	0.381	0.381	25.4 serve-h	dteplic.	Lateral Loading Size Cyclic dep controlled	pin and		1.45_e_R_1.55	20-Jun-12	6	5	183.9	35	0.0286 0.0000233	0.0236 Model	0.15	1211	1	None	Sand	0.15	82 9	199	3 2
13	Hakhamanohi,	Bruce L.	Sashi K	Matakhamanani	NEESIC NSP- NEESIC	1 MAHS-	UC Dec.,	Centrifuge	Container Rigid	0.381	0.381	25.4 servo-h	diaulic	Lateral Loading Slow Cyclic dap controlled Lateral Loading	pin and	21	1.57, s.R.0.14	3-Aug-12	6	1	184.5	35	0.0286 0.0000233	0.0286 Model	0.15	1717	1	Norte	Sard Nexatla Sard	0.15	80 91	/99	4 7
14	Hakhamarinshi,	Bruce L. Kutter	Sadrin.	M2takhamammhi	NSP- NEESR	MAHS-	UC Day	Contrifugo	Rigid Container	0.381	0.381	25.4 servo-h	dowle	1 Slow Cyclic disp controlled Lateral Loading	pin and	2 1	1.57_e_R_0.14	3-Aug-12	0	2	184.5	35	0.0286 0.0000233	0.0286 Model	0.15	1111	1	None	Nexada Sand	0.15	80 91	199	.4 2
25	Hakhamancshi,	Bruce L. Butter Bruce L.	Sath K.	Mittakharramshi	NSP- NEESR NSP-	MAHS-	UC Day	Centrituge	Rigid Container Rigid	0.381	0.381	25.4 serve-h	deaule.	1 Slow Cyclic dap controlled Lateral Loading 2 Slow Cyclic dap controlled	per and	21	1.57_r_R_0.14	3-Aug-12	6	3	164.5	35	0.0286 0.0000233	0.0286 Model	0.15	m	1	None	Nevada Sand Nevada	0.15	80 91	200	4 7
17	Hakhamaneshi,	Kutter Brace L	SahiK	Mittakhurranshi	NEESR NSF-	1 MAHS	UC Day	Contrifuge	Container	0.381	0.381	25.4 servo-b	draule	Lateral Loading Slow Cyclic dep controlled	per and	201	1.57, e.R. 0.14	3-Aug-12	6	4	184.5	- 35	0.0286 0.0000233	0.0286 Model	0.15	110	1	None.	Sard	0.15	80 95	199	4 7
18	Hakhamanishi,	Bruce L. Butter	Sash(K.,	Matakhamamahi	NSF- NEESK	MAHS	UC Day	Contribugo	Rigid	0,381	0.581	25.4 servo-h	dtaukt	1 Slow Cyclic disp controlled Lateral Loading	pin and	221	1.57_#_R_0.14	3-Aug-12	6	6	184.5	35	0.0286 0.0000233	0.0286 Model	0.15	1111	1	None	Novada	0.15	80 91	292	4 7
19	Hakhamaneshi,	Bruce L. Kutter	Sashi K	M2takhamanishi	NSF- NEESR	MAHS-	UC the	Centrifuge	Rigid Container	0.381	0.381	25.4 servo-h	douis.	1 Slow Cyclic disp controlled Lateral Loading	pin and	60	1.5_x_H50_0.11	29-Aug-12	ò	1	184.4	35	0.0288 0.0000233	0.0286 Model	0.15	1212	1	None	Newada Sand	0.15	81 91	199	3 2
20	Hakhamanohi,	Rutter Bruce L	Savhill.	M2takhamanahi M2takhamanahi	NEESIC NSF-	1 MAHS	UC Day.	Contribugo	Container	0.381	0.381	25.4 servo-h	drauliz.	Lateral Loading Slow Cyclic dep controlled	pin and	8/2 8/2	1.5_x_H50_0.11	29-Aug-12	4	2	184.4	35	0.0286 0.0000233	0.0286 Model	0.15		1	None	Sard	0.15	81 99	299	3 /
22	Hakhamarinshi,	Bruce L. Kutter	Sahr K.	Matakhamanishi	NEESR NEESR	MAHS	UC Day	Contribugo	Container Rigid Container	0.381	0.381	25.4 serve-h	douie.	Lateral Loading Sinw Cyclic disp controlled Lateral Loading	pier and	64	1.5_s_H50_0.11	29-Aug-12	6	4	184.4	35	0.0286 0.0000233	0.0286 Model	0.15	m	1	None	Nexada Sand	0.15	81 99	199	3 7
23	Hakhamancshi,	Bruce L. Rutter	Sashi K	Matakhamanshi	NSF- NEESR	MAHS-	UC Day	Centriluge	Rigid Container	0.381	0.381	25.4 servo-h	draulic	1 Slow Cyclic dap controlled Lateral Loading	pri and	24	1.5_#_H50_0.11	29-Aug-12	6	6	164.4	35	0.0286 0.0000233	0.0236 Model	0.15	mi	1	None	Nevada Sand	0.15	81 91	199	3 7
- 24	Hakhamanshi,	Bruce L. Bruce L.	SahiK.	Mataktuerumohi	NSP- NEESR NSE-	1 MAHS	UC Day	Contrituge	Container Rigid	0.381	0.381	25.4 servo-h	draulic	Slow Cyclic dep controlled Lateral Loading Slow Cyclic dep controlled	pin and	202	1.5.)()(50,0.11	29-Aug-12	6	6	184.4	35	0.0286 0.0000233	0.0286 Model	0.15	1117	1	None	Nevada Nevada	0.15	81 99	299	3 1
26	Hakhamannihi,	Brute L.	Sashi K	Matakhamanahi	NEESR NSE- NEESR	MAHS-	UC Day	Contribugo	Container	0.381	0.581	25.4 serve-h	dtauk:	Lateral Looding Slow Cyclic disp controlled Lateral Looding	pin and	55	1.5,c,H50,0.1/	8-Nov-12	6	2	184.1	35	0.0286 0.0000233	0.0236 Model	0.15	1717	1	None	Sard Novada Sand	0.15	82 91	199	4
27	Hakhamancshi,	Bruce L. Kutter	Sashi K.,	M.Hakhamanashi	NSF- NEESR	MAHS-	UC East	Centrifuge	Rigid Container	0.381	0.381	25.4 aurvo-b	draulic	1 Slow Cyclic disp controlled Lateral Loading	pin and	80 ²	1.5_x_H50_0.17	8-Nov-12	6	3	184.1	35	0.0288 0.0000233	0.0236 Model	0.15	1111	1	None	Neveda Sand	0.15	82 91	199	4 1
28	Hakhamanohi,	Bruce L. Kutter	Sahik.	MJtakhamamphi	NSF- NEESR	MAHS-	UC Day.,	Contribuger	Rigid Container Bigid	182.0	0.581	25.4 servo-h	douls	1 Slow Cyclic dep controlled Lateral Loading Slow Cyclic den controlled	pin and	60°	1.5_K_H50_0.17	8-Nov-12	6	4	184.1	35	0.0286 0.0000233	0.0286 Model	0.13	m	3	None	Nevada Sard	0.15	82 99	199	4
29	Hakhamanoshi,	Sutter Bruce L.	SahiK.	M2takhamammini M2takhamammini	NEESR NSP	1 MAHS	UC Day	Contrituge	Container	0.381	0.381	25.4 servo-h 25.4 servo-h	diaulic draulic	1 Lateral Loading 1 Slow Cyclic dap controlled	pin and	80 80	1.5 e H50_0.17	8-Nov-12 8-Nov-12	0	5	184.1	35	0.0286 0.0000233	0.0286 Model	0.15	1111	1	None	Sand	0.15	82 9	222	4 1
31	Hakhamancahi,	Bruce L. Butter	Sahi K	Mittakharramshi	NSE- NEESR	MAHS	UC Day	Centriluge	Rigid	0.381	0.381	25.4 serve-h	drauke	1 Slow Cyclic disp controlled Lateral Loading	per and	10	1.5,e,H35,0.13	2-Nov-12	6	1	164.3	35	0.0286 0.0000233	0.0286 Model	0.15	mi	1	None	Nevada Sand	0.15	81 99	199	4 1
32	Hakhamancahi,	Bruce L. Kutter	SashiK	M.Hakhamanishi	NSP- NEESR	MAHS-	UC Day	Contribuge	Rigid Container	0.381	0.381	25.4 servo-b	dravéz	1 Slow Cyclic, disp controlled Lateral Loading	pin and	800	1.5_F_H35_0.13	2-Nov-12	۵	2	184.3	35	0.0286 0.0000233	0.0286 Model	0.15	1111	1	None	Nexada Sand	0.15	81 99	199	4
33	Hakhamaneshi,	Bruce L	Sashi K.	M.Hakhamanishi M.Hakhamanishi	NEESR.	1 MAHS-	UC Day	Contribugo	Container	0.381	0.381	25.4 serve-b	duele.	Lateral Leading Slow Cyclic day controlled	per and	FUT	1.5_6_H35_0.13	2-Nov-12	6 	3	1843	35	0.0286 0.0000233	0.0286 Model	0.15		1	None.	Sard	0.15	81 99	999	4
35	Hakhamaneshi,	Bruce L. Kutter	Sashi K.,	Matakhamanishi	NEESR NEESR	MAHS-	UC the	Contribugo	Container Rigid Container	0.381	0.381	25.4 servo-h	duapăc	Lateral Loading Slow Cyclic disp controlled Lateral Loading	pin and	10	1.5_0_H35_0.13	2-Nov-12	6	5	184.3	35	0.0288 0.0000233	0.0236 Model	0.15	mu	1	None	Neveda Sand	0.15	81 99	199	4
36	Hakhamanohi,	Bruce L. Kutter	Sashi K	Mätaktuenanisti	NSE- NEESR	MAHS- 1	UC Day	Contribuger	Rigid Container	0.381	0.581	25.4 servo-h	douls.	1 Slow Cyclic disp controlled Lateral Loading	pin and	10	1.5_x_H35_0.13	2-Nov-12	â	é.	184.3	35	0.000235	0.0286 Model	0.15	nn	1	None	Nevada Sard	0.15	81 99	99	.4
3/	Plakhemanoshi,	Bruce L. Sutter Bruce L.	SahiK.	M2takhamamrahi	NSP- NEESR NSP-	MAHS-	UC Das	Centrifuge	Rigid Container Rigid	0.381	0.381	25.4 servo-h	diaulic	1 Slow Cyclic disp controlled Lateral Loading . Slow Cyclic disp controlled	pin and	15	1.5_0_H35_0.26	6-Nov-12	0	1	183.9	35	0.0286 0.0000233	0.0286 Model	0.15	1117	1	Norte	Nexada Sand Nexada	0.15	80 99	299	3 1
39	Hakhamanishi,	Kutter Bruce L.	Sashi K	Mittakharramenti	NEESR NSF- NEESR	1 MAHS-	UC Day	Centrituge	Container Rigid	0.381	0.381	25.4 servo-h	douic douic	Lateral Loading Slow Cyclic dap controlled Lateral Loaders	per and	10	1.5,0,H35,0.26	6-Nov-12	6	3	183.9	35	0.0286 0.0000233	0.0286 Model	0.15	nn	1	None	Sard Nevada	0.15	80 91	199	3 1
40	Hakhamancahi,	Bruce L. Kutter	Sash)K	Matakhierumshi	NSP- NEESR	MAHS-	UC Day	Contribugo	Rigid Container	0.381	0.381	25.4 servo-h	draolic	1 Slow Cyclic disp controlled Lateral Loading	pin and	-	1.5.0.005.0.26	6-Nov-12	6	4	183.9	35	0.0286 0.0000233	0.0286 Model	0.15	m	1	None	Nexada Sand	0.15	80 99	199	3 1
41	Hakhamaneshi,	Brace L. Nutter	SahiK.	MJtakhumanishi	NSF- NEESR	MAHS-	UC Day	Contribugo	Rigid Container	0.381	0.381	25.4 arvo-h	dtaulic	1 Slow Cyclic dep controlled Lateral Loseling Slow Cyclic dep controlled	per and	15	1.5_r_H35_0.26	6-Nov-12	6	5	183.9	35	0.0286 0.0000233	0.0286 Model	0.15	1117	1	None	Nexatla Sarci Nexatla	0.15	80 99	199	3 1
42	Hakhamannshi,	Bruce L	Sathi K.	Matakhamamahi Matakhamamahi	NEESIC NSF-	1 MAHS-	UC Day	Centrifuger	Container	0.381	0.381	25.4 servo-h	draulic draulic	1 Lateral Loading 1 Slow Cycle: disp controlled	pin and		1.5 c H65 0.09	6-Nov-12 28-Nov-12	6	6	1819	35	0.0286 0.0000233	0.0286 Model	0.15	1111	1	None	Sand	0.15	80 91	299	3 1
44	Hakhamanohi,	Bruce L. Kutter	Saihi K	Mätakhamamohi	NEESH NSE- NEESR	MAHS-	UC Day.	Centriluge	Rigid	0.381	0.581	25.4 servo-h	dante	1 Slow Cyclic dep controlled Lateral Loading	pin and	-	3.5_K_H65_0.09	28-Nov-12	6	2	184.1	35	0.00086 0.0000233	0.0286 Model	0.15	m	1	None	Nevada Sard	0.15	82 9	199	3
45	Hakhamancihi,	Bruce L. Kutter	Sashi K	M.Hakhamammini	NSF- NEESR	MAHS-	UC Dec.,	Contrifuge	Rigid Container	0.381	0.381	25.4 servo-b	diaulic	1 Slow Cyclic thep controlled Lateral Loading	pin and	80	1.5_4_H65_0.09	28-Nov-12	6	3	184.1	35	0.0286 0.0000233	0.0286 Model	0.15	1717	1	Norte	Nexada Sand	0.25	82 9	999	3 1
46	Hakhamarinshi,	Bruce L.	Sahik.	M2takhamamahi M2takhamamahi	NEESR NSF	1 MAHS	UC Day	Contribugo	Container	0.381	0.381	25.4 serve-h	douic drauke	Lateral Leading Slow Cyclic dap controlled	pin and	102. 102	1.5_e_H65_0.09	28-Nov-12 28-Nov-12	6	4	184.1	35	0.0286 0.0000233	0.0286 Model	0.15	1111	1	None	Sand	0.15	82 91	299 296	3 1
48	Hakhamaneshi,	Bruce L. Kutter	Sashi K	M.Hakhamaneshi	NEESH NEESR	MAHS	UC Day	Centrituge	Container Rigid Container	0.381	0.381	25.4 serve-b	drawlic	Lateral Looding Slow Cyclic, dup controlled Lateral Looding	pin and	-	1.5_F_H65_0.09	28-Nov-12	6	6	184.1	35	0.0286 0.0000233	0.0286 Model	0.15	m	1	None	Nexada Sand	0.15	82 9	199	3
49	Hakhamaneshi,	Bruce L. Kutter	SahiK.,	M2takhamanishi	NSF- NEESR	MAHS-	UC Day	Contribugo	Higid Container	0.381	0.381	25.4 arvo-h	draule.	1 Slow Cyclic disp controlled Lateral Loading	pri and	10	2_x_R_1.55	6-Dec-12	6	1	184.1	35	0.0286 0.0000233	0.0286 Model	0.15	1212	1	None	Nexatla Sard	0.15	82 9	199	3 1
30	Hakhamannahi,	Bruce L. Bruce L	Sashi K.	Matakhamanahi	NSF- NSF- NSF-	MAHS- MAHS-	UC Day	Contribugo	Container Rigid	0.381	0.381	25.4 servo-h	drauke.	Slow Cyclic disp controlled Lateral Loading Slow Cyclic disp controlled	pin and	1	2,3,8,3.55	6-Dec-12	6	2	184.1	35	0.0286 0.0000233	0.0286 Model	0.15	1717	1	None	Nevada Nevada	0.15	82 91	299	3 1
. 52	Hakhamamolti,	Kutter Bruce L. Kutter	Sashi K	Matakhamanshi	NEESR NSE- NEESR	MAHS-	UC Day	Contribugo	Container Rigid	0.381	0.381	25.4 servo-h	douls.	Lateral Loading Slow Cyclic dap controlled Lateral Loading	pin and	100	2,00,045	6-Dec-12	6	4	184.1	35	0.0286 0.0000233	0.0286 Model	0.15	1111	1	None	Sand Nevada Sand	0.15	82 9	199	3 1
53	Hakhamanoshi,	Bruce L. Sutter	Sashi K	Matakhamammini	NSF- NEESR	MAHS-	UC Das	Centrifuge	Rigid Container	0.381	0.381	25.4 servo-h	diaulic	1 Slow Cyclic dhp controlled Lateral Loading	pin and	11	2_X_R_1.55	6-Elec-12	6	5	184.1	35	0.0286 0.0000233	0.0286 Model	0.15	1717	1	Note	Nexada Sand	0.15	82 9	299	3
.59	Hakhamanshi,	Bruce L. Kutter Bruce L.	SahiK.	Matakhamamahi	NSP- NEESR NSE-	MAHS-	UC Day	Contribugo	Rigid Container Fried	0.381	0.381	25.4 servo-h	dowle.	Slow Cyclic disp controlled Lateral Leading Slow Cyclic disp controlled	pier and	1955 1951	2,x,R,1.55	6-Dec-12	6	6	184.1	35	0.0286 0.0000233	0.0286 Model	0.15	m	1	None	Nexada Sand	0.15	82 91	299	3 1
30	Hakhamancihi,	Bruce L.	Sash)K	Matakhamanishi	NEESR NSP- NEESR	MAHS-	UC Day	Centrifuge	Container	0.381	0.381	25.4 serve-h	drauez drauez	Lateral Loading Slow Cyclic, dup controlled Lateral Loading	pin and		1.6,3,8,0.14	6-Dec-12	5	2	184.4	35	0.0286 0.0000233	0.0286 Model	0.15	m	1	None	Sand Nexada	0.15	81 99	199	3 3
: 37	Hakhamamahi,	Brace L. Kutter	SahiK	MJtakhumanishi	NSF- NEESR	MAHS-	UC Day	Contribugo	Rigid Container	0.381	0.381	25.4 arvo-b	dtaulc.	1 Slow Cyclic dap controlled Lateral Loading	per and	-	1.6_x_R_0.14	6-Dec-12	5	3	184.4	35	0.0286 0.0000233	0.0286 Model	0.15	1717	1	None	Nexatla Sard	0.15	81 95	199	3 1
- 38	Hakharbarinshi,	Brute L. Kutter	Sashi K.	Matakhamanahi	NSE- NEESIC	MAHS-	UC Day	Contribuge	Rigid Container Blaid	0,381	0.381	25.4 servo-h	dtaulit	1 Slow Cyclic disp controlled Lateral Loading Slow Cyclic days revendent	pin and	81	1.6_8_R_0.14	6-Dec-12	5	4	184.4	35	0.0286 0.0000233	0.0286 Model	0.15	1717	1	None	Novada Santi Nevada	0.15	81 91	999	3 1
52	Hakhamanishti,	Kutter Bruce L	Sachi K	M2takhamanishi M2takhamanishi	NEESR NSF	1 MAHS	UC Day.	Centrifuge	Container	0.381	0.381	25.4 servo-h	dessie.	1 Lateral Loading 1 Slow Cyclic dap controlled	pin and		1.6_8_R_0.14	6-Dec-12	5	5	184.3	35	0.0286 0.0000233	0.0286 Model	0.15		1	None	Sand	0.15	81 99	299	3 4
61	Hakhamancshi,	Bruce L. Sutter	Sashi K	M2takhumammini	NSF- NEESR	MAHS-	UC Dec.,	Centrifuge	Rigid	0.381	0.381	25.4 servo-h	diaulic	1 Slow Cyclic the controlled Lateral Loading	pin and		14,4,8,0.6	6-Elec-12	5	2	184.3	35	0.0286 0.0000233	0.0286 Model	0.15	1717	1	Norte	Nexata Sand	0.25	82 9	299	3
62	Hakhamanshi,	Bruce L. Kutter	SahiK.	M2takhamanishi	NSP- NEESR	MAHS- 1	UC Day	Contrifugo	Rigid Container	0.381	0.381	25.4 servo-h	doute	1 Slow Cyclic dap controlled Lateral Loading	pin and		1.4,s,R,0.6	6-Dec-12	5	3	184.3	35	0.0286 0.0000233	0.0286 Model	0.15	m	1	None	Nexada Sand	0.15	82 91	199	3 1
63	Hakhamancahi,	Butter Bruce L	Sashi K.	M.Hakhamanahi M.Hakhamanahi	NEESR NSP-	MAHS	UC Day	Centriluge	Container	0.381	0.381	25.4 serve-h	dtaule.	Lateral Loading Slow Cyclic dep controlled	pin and		14,5,8,06	6-Dec-12	5	4	164.3	35	0.0286 0.0000233	0.0286 Model	0.15		1	None	Santi Nevada	0.15	82 9	299	3 1
65	Hakhamaneshi,	Brace L. Nutter	SahiK.	Mittakhamanishi	NEESR NSE- NEESR	MAHS-	UC Day	Contribugo	Container Rigid Container	0.381	0.381	25.4 arvo-b	duelc	Lateral Leading Slow Cyclic disp controlled Lateral Leading	per and		1.5_x_H05_0.26	13-Dec-12	5	1	183.9	35	0.0286 0.0000233	0.0286 Model	0.15	1117	1	None	Sard Nexatla Sard	0.15	81 9	199	3 1
66	Hakhurturinihi,	Bruce L. Kutter	Sashi K.	Matakhamanahi	NSF- NEESR	MAHS-	UC Day	Centrifuger	Rigid Contairer	0.381	0.381	25.4 servo-h	dcaulic	1 Slow Cyclic disp controlled Lateral Loading	pin and		1.5,x,H05_0.26	13-Dec-12	5	2	183.9	35	0.0286 0.0000233	0.0286 Model	0.15	1111	1	None	Novada Sand	0.15	81 91	199	3
67	Hakhamanmini,	Bruce L. Bruce L.	Sauhi K.	M.Hakhamanshi M.Hakhamanshi	NSF- NEESR NSF-	MAHS- 1 MAHS-	UC Day.	Centrifuge	Container Rigid	0.381	0.381	25.4 serve-b	dtapär.	Site Cyclic disp controlled Lateral Loading Site Cyclic disp controlled	pin and		1.5_x_H35_0.26	13-Dec-12	5	3	1819	35	0.0286 0.0000233	0.0286 Model	0.15	1212	1	None	Sand Nevada	0.15	81 99	299	3
69	Hakhamanoshi,	Bruce L.	Sashi K	Matakhamamahi	NEESIC NSF- NEESIC	1 MAHS	UC Day.	Centrifuge	Container Rigid	0.381	0.381	25.4 servo-h	diaulic	Lateral Loading Show Cyclic thep controlled Lateral Loading	pin and		1.5,3,105,026	13-Dec-12	5	-	183.9	35	0.0286 0.0000233	0.0286 Model	0.15	m	1	Norm	Sard Nexatla	0.15	81 9	299	3
70	Hakhamantshi,	Bruce L. Kutter	SahiK.	Matakhamanishi	NSF. NEESR	MAHS-	UC Day	Contribugo	Rigid Container	0.381	0.381	25.4 serve-h	douis.	1 Slow Cyclic dap controlled Lateral Loading	pier and	-	1.5_x_H05_0.13	23-Jan-13	4	1	184	35	0.0286 0.0000233	0.0286 Model	0.15	m	1	None	Nexada Sand	0.15	81 99	199	3
12	Hakhumancohi,	Bruce L. Rutter Bruce I	Sauhi K.	Mittakhurrumeshi	NSF- NEESR	MAHS-	UC Day	Centrihago	Rigid Container Rigid	0.381	0.381	25.4 serve-h	draule	1 Slow Cyclic dep controlled Lateral Loading	pin and		1.5_x_H35_0.13	23-Jan-13	4	2	184	35	0.0286 0.0000233	0.0296 Model	0.15	m	1	None	Newada Sand Newada	0.15	81 91	299	3 1
72	Hakhamanshi,	Kutter Brace L.	SahiK.	Matakhamamahi	NEESR NSF-	1 MAHS-	UC DW.	Centrifuge	Container Rigid	0.381	0.381	25.4 serve-h	dtaulic	Lateral Loading Size Cyclic dep controlled	per and	-	15,x,H05,0.13	23-Jan-13	4	3	184	35	0.0286 0.0000233	0.0286 Model	0.15	110	1	None	Sand Nexatla	0.15	55	199	3 1
. 14	Hakhurtannıhi,	Brute L. Kutter	Sash(K.,	Matakhamanahi	NSF- NEESR	MAHS	UC Day	Centrifuger	Rigid Container	0,381	0.381	25.4 serve-h	dtaulit	1 Slow Cyclic disp controlled Lateral Loading	pin and		1.5_x_H50_0.17	28-Jan-13	5	1	184.1	35	0.0286 0.0000233	0.0286 Model	0.15	1111	1	None	Nevada	0.15	80 91	99	4
75	Hakhamaneshi,	Bruce L. Kutter	Sadrik.	M2takhamanishi	NSF- NEESR	MAHS-1	UC Day	Centrifuge	Rigid Container	0.381	0.381	25.4 servo-b	douis	1 Slow Cyclic dep controlled Lateral Loading	pin and		1.5_x_H50_0.17	28-Let-13	5	2	184.1	35	0.0288 0.0000233	0.0286 Model	0.15	1212	1	None	Nevada Sand	0.15	80 91	29.9	4
76	Plakhamanchii,	Rutter	1000	Matakhamamahi	NEESR	1	UC Day.	Contribugo	Container	0.381	0.381	25.4 servo-h	drauer.	1 Lateral Loading	pin and		1.5_0_H90_0.17	28-Jan-13		3	154.1	15	0.0286 0.0000233	0.0286 Model	0.15		1	Pitone	Sard	0.15	80 9	22	2

FoRDy: Rocking Shallow Foundation Performance in Dynamic Experiments

Event ID: UCSD-2-AS-12

Large High Performance Outdoor Shake Table, University of California—San Diego

Credits: Andreas Gavras, Marios Panagiotou, Antonellis, Restrepo, Fox et al

Large-scale models tested at 1 g.

Credits: Andreas Gavras, Marios Panagiotou, Antonellis, Restrepo, Fox, et al.

FoRDy configurations and motions

Definition of some parameters documented in FoRCy and FoRDy

FoRCy configurations

Key plots in FoRCy (available for every entry in the database).

Conclusions from FoRCy and FoRDy

- Rocking foundations, like beams and columns, can be reliable energy dissipating components of seismic force resisting systems. They can reduce demands on the superstructure.
- Data sharing and reuse
 - A way to deal with human tendency to overlook limitations of their own experiments
- If you are interested in doing rocking experiments, please look at these databases
 - Fill gaps in the database

FoRCy Input Data Matrix - gaps

FoRDy Input Data Matrix - gaps

67

Brainstorming some research topics of the future

- Glacier movement: ice-water-soil-rock interaction problem
- Floating Cities?
- Mass transit and high speed rail
- Wind farm foundations
- Old problems and Overdue technology
 - Validation of numerical methods
 - Improved site investigation and models of the geotechnical environments
 - Accounting for uncertainty in experiments
 - Particle mechanics what is the fundamental difference between silt and sand? Dealing with intermediate soils.
 - Liquefaction flow mechanisms

Ice-water-soil-rock interaction

Figure 8.33. Longitudinal section of Storglaciären, Sweden, approximately along a flowline showing cirque, overdeepened basins, water-input points (crevasse zones and bergschrund), and inferred locations of quarrying (indicated by $\Delta\Delta\Delta$). Here w.e.l. = water equivalent line; circles (o) show heights of water in boreholes. (Modified from Hooke, 1991, Figure 2.)

Water pressure ~ total stress Effective stress in till at the base of the glacier? Effect of earthquake on glacier stability? Effect on sea level? Ice quakes (M ~ 5 ??)

Closing thoughts

- Research Topic
 - Imaginative, New, Grand Challenge
 - Old unsolved overlooked problems
- Validation of ability to simulate a function (not a data point)
- Become and expert persistence
- Approach
 - Theory / fundamental mechanics / rigor
 - Small scale experiments (materials, components)
 - Large scale (systems/proof of concept)
 - Simulation (calibration and validation
 - Implementation
- Use existing data, share your data

Thank you for your attention