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Advice for early and mid career 
physical modelers

• Pick a problem/topic
– Important topic with funding prospects

• Bite off a piece of the big problem and test a 
hypothesis

• Update the problem statement and take another bite
• Be persistent

– Maintain attention to fundamentals and rigor
– Publish / disseminate
– Share your data and information
– Eventually, become an acknowledged expert
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More advice for physical modelers
• Common motivations for physical model tests

– Mechanisms can be explored with model tests
– New or untested technologies (gaps) can be studied 
– Validation/calibration of analysis procedures and 

numerical methods
• Do hypothesis driven research

– State your hypotheses
– Don’t add complexity to an experiment that detracts from 

focus on testing the hypotheses. 
• Multiprong approach/multiprong expertise

– Theory & Fundamental mechanics
– Small scale experiments (materials  and components)
– Simulation  Experiment  (validation/calibration)
– Large scale testing (systems, proof of concept)
– Implementation
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Outline of this talk

• Picking a problem of importance
• Example 1: LEAP
• Example 2: Rocking Foundations Database
• Brainstorming new research areas
• Summary
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Pick a problem with societal relevance
• Imagine new and future problems

– Dealing with sea level rise
• Low-lying/coastal population and infrastructure
• Levees, waterfront structures

– Green energy 
• Wind Farm foundations

– Transportation
• Mass transit, high speed rail, autonomous vehicles

– Coupling with other hazards – earthquake and tsunami
• Ongoing Problems: Infrastructure assessment – e.g., ASCE 

report card
– Existing buildings, dams, levees, ports, bridges, rail 
– Earthquake and Wind

• Overlooked problems, overdue fundamental academic 
problems
– Validation of numerical methods 
– Implementation in practice
– Accounting for uncertainty 5
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Sea level 
will rise 

from 1 to 
3’ by 
2100

https://climate.nasa.gov/
vital-signs/sea-level/

2100

500

750

∆T? 
Fragility of ice and 
glaciers?
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“Never before has the future looked so exciting. From 
autonomous vehicles to the most cutting-edge green 
technologies, the built environment is reshaping before our 
eyes. Exciting as it is, these changes breed challenges. The 
future will require a new way of doing things. ….  ASCE has 
launched a bold, comprehensive project to anticipate, 
reimagine, and prepare for future changes.”
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Future World Vision Example scenario 
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Another Example: 
Wind Turbine Systems

Malhotra, S. (2011), Selection, Design and Construction of Offshore Wind Turbine Foundations, Wind Turbines, 
Ibrahim Al-Bahadly (Ed.), ISBN: 978-953-307-221-0, InTech, Available from: 
http://www.intechopen.com/articles/show/title/selection-design-and-construction-of-offshore-windturbine-foundations
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Pick a problem of societal 
importance

• New and future problems
– Dealing with sea level rise

• Low-lying/coastal population and infrastructure
• Levees, waterfront structures, flooding frequency

– Green energy 
• Wind Farm foundations

– Transportation
• Mass transit and High speed rail

– Coupling with other hazards – earthquake and tsunami
• Ongoing Problems: Infrastructure assessment – e.g., ASCE report card

– Existing and new buildings, dams and levees, ports, bridges, rail 
– Earthquake and wind
– Fundamental mechanics

• Overlooked problems, overdue fundamental academic problems
– Validation of numerical methods and analysis procedures
– Implementation in practice
– Accounting for uncertainty
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ASCE infrastructure report card
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Examples

1. LEAP-UCD-2017 and LEAP-Asia-2019
2. Rocking foundations data bases: FoRCy and 
FoRDy
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Example Topic 1: LEAP

48 Round-robin centrifuge model tests of 
liquefaction and lateral spreading: 

consistency of experiments and comparisons 
to simulations for LEAP

LEAP (Liquefaction Experiments and Analysis Projects) is 
an international effort to perform model tests to assess 
the accuracy of numerical procedures for predicting the 

effects of liquefaction 
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Motivation for LEAP:  We do not formally know how 
accurate these simulations are.

Yet, we depend more and more on their accuracy!
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LEAP 
• Hypothesis: If we do a lot of similar liquefaction 

experiments in several laboratories, we will be able 
to assess the accuracy/uncertainty of the physical 
model test data.
– Quantitative assessments of the accuracy of a numerical 

procedure depend on knowing the accuracy and 
uncertainty of the reference experimental data. 

– To know the accuracy and uncertainty of the data, inter-
laboratory reproducibility must be established. 

– Since reproducibility is not perfect, we need to account 
for:

• the variability of initial conditions and boundary conditions, 
and, 

• the sensitivity of the results to the variations of these 
conditions. 
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LEAP-GWU-2015, 
LEAP-UCD-2017
LEAP-Asia-2019 

used the same 
“simple” 

experiment 
configuration: 

submerged sloping 
ground in a rigid 
box subject to 

ramped sine wave 
base motion
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For LEAP-GWU-2015 
• Attempt to duplicate the same data 

point on different equipment.
– Only some results were “close enough” 
– Differences suspected to be explained by 

errors and equipment limitations
– “goodness of fit”: Standard Deviation

For LEAP-UCD-2017
• Embrace the variability, try to 

quantify variation, but also minimize 
and quantify uncertainty.

• Try to demonstrate a trend, not just 
a repeatable point
– Sensitivity – slope of the trend

• “goodness of fit”: R2

• Multiple inputs require more 
dimensions

• Even the “bad tests” help define the 
trend
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Evaluation of numerical simulations

Past validation efforts 
have often focused 
on comparisons 
between predictions 
and experiments for 
a single data point.  
Duplication of a 
single data point can 
be deceptive. Input (e.g., PGA, Dr)O

ut
pu

t (
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em
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Simulation

Sexperiment

Ssimulation

Hypothesis: It will be easier to validate simulations 
if we compare the experimental and simulation 
response functions.



Example data: pore pressures in the 
central array
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How does                              
the centrifuge 

work?

Credits: Cheney, Wilson, Boulanger, Pedersen 23



About 75 g, 90 RPM

The centrifugal force increases the 
“weight” of the model to simulate weight 
of full scale Civil Structures
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To simulate 
earthquakes, we to 
shake the models while 
they spin

S

A

N

D

Horizontal 
actuator

75 g Centrifugal Force
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A building or other 
structure may be 
placed on the sand

2 ft of soil spinning at 
75 g represents 150 ft 
of soil at 1g
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D

75 g Centrifugal Force
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Stress Distribution in 1/2 Scale Model Under 2g

d/2 σ = ρ(2g)(d/2) = ρgd

Prototype Stress Distribution

σ = ρ
d

g d

PRINCIPLE  OF  CENTRIFUGE  MODELLING

Idea is to produce a realistic stress and realistic stress distribution in 
controlled experiments with well defined boundary conditions and 
well defined material properties

Lp

Lm

L* = Lm/Lp = 0.5

g* = gm/gp = 2

ρ* = ρm/ ρp = 1
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Stress Distribution in 1/2 Scale Model Under 2g

d/2 σ = ρ(2g)(d/2) = ρgd
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Example data: pore pressures in the 
central array
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All the data is published and publically accessible! 

www.DesignSafe-CI.org
PRJ-1843: LEAP-UCD-2017 EXPERIMENTS (LIQUEFACTION 
EXPERIMENTS AND ANALYSIS PROJECTS)
doi:10.17603/DS2N10S
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Comparison of 2017 and 2019 data
Only include data from tests using conventional centrifuge scaling laws, and 
only tests that included cone penetration tests

LEAP-UCD-2017 LEAP-Asia-2019
R2 = 0.60 R2 = 0.94 

Similar surfaces, but apparent improvement in testing quality
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• 2017 and 2018 data
• Conventional and non 

conventional scaling laws.
• CPT or no CPT 
• 45 centrifuge tests on one graph! 
• R2 = 0.80
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Conclusions – LEAP experiments
• The LEAP experiments are consistent with 

each other.  The displacement response 
surface is correlated to the PGA and relative 
density with coefficient of correlation R2 ~ 
0.8 or greater. 

• We are now able to estimate the variability 
of the experimental data by comparing the 
difference between the data and the 
regressed response surface

• Experimental data is published.  
– www.DesignSafe-ci.org
– search for LEAP in Data Depot
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Validation of numerical 
simulations of LEAP 

experiments
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Numerical Simulation Team Constitutive Model Analysis 
Platform

1) Tsinghua University Tsinghua Constitutive Model OpenSEES
2) Meisosha Corporation Cocktail Glass Model FLIP Rose
3) Shimizu Corporation Bowl Model HiPER
4) University of Napoli Hypoplastic Model Plaxis

5) UC Davis - Auburn 
University

a) PM4Sand –Cal 1
b) PM4Sand –Cal 2 Go larger
c) PM4Sand –all Dr = 62%
d) PM4Sand –even Lower Dr
s)     PM4Sand –corrected Dr

FLAC-2D

6) University of Washington
a) DM04 Model 
b) DM04 Model 
c) PM4Sand

OpenSEES
OpenSEES (1D) 
OpenSEES (1D)

7) Kyoto University Cocktail Glass Model FLIP
8) Universidad del Norte ISA-Hypoplasticity Model ABAQUS
9) Univ. British Columbia SANISand FLAC-3D
10) UCSD PDMY OpenSEES

11) Fugro West a) UBCSAND
b) PM4Sand FLAC-2D
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Ueda et al. (2019)

Simulation of Element test data 
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Here are 16 Type B predictions of one test.
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Response surface 
from experiments
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compared to response surface from 

several experiments
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Conclusions and open issues: Validation
• Matching experimental/numerical response 

function over a range of key input 
parameters is useful for assessing the 
quality of a simulation procedure. 
– We focused on residual displacement response 

surface for a lateral spreading soil in a rigid box
• Different response quantities
• Different BC’s for lateral spreading?
• Layering, rigid walls, 

– The LEAP database provides a solid basis for 
one aspect of assessment
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Conclusions and open issues
• It is easier to “assess” than to “validate” 

– Validation of “model” or validation of 
“modeler”?

• Same code different people give different results
• Mistakes, lack of careful review, time limitations
• Subjective criticism of friends and competitors 
• Objective but general metrics depend on the 

problem at hand. 

• Validation for other liquefaction problems
• Void redistribution, flow failures, embankments
• SSI problems: e.g. downdrag on piles, tilting of 

buildings
• Remediation methods
• Sheet pile walls is the subject of LEAP-RPI-2020 50



LEAP references
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Ueda, Kyohei, (2018-12-04), "LEAP-Asia-2018: Stress-strain response of Ottawa sand in Cyclic 
Torsional Shear Tests" , DesignSafe-CI [publisher], Dataset, doi:10.17603/DS2D40H
https://doi.org/10.17603/DS2D40H

Manzari, Majid, (2018-12-04), "LEAP-2018 - Stress-strain response of Ottawa F65 sand in Cyclic 

Simple Shear" , DesignSafe-CI [publisher], Dataset, 
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https://doi.org/10.17603/DS2210X
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DOI: https://doi.org/10.17603/DS2TH7Q

Trevor Carey; Bruce L Kutter; Majid T Manzari; M. Zeghal (2017), "Leap Soil Properties 
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Open access!!
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Example topic 2
FoRDy: Database of Rocking Shallow 
Foundation Performance – Dynamic Shaking
FoRCy: Database of Rocking Shallow 
Foundation Performance – Slow Cyclic and 
Monotonic Loading 
Andreas G. Gavras, Bruce L. Kutter, Manouchehr Hakhamaneshi, Sivapalan 
Gajan, Weian Liu, Angelos Tsatsis, Keshab Sharma, Giovanna Pianese, Tetsuya 
Kohno, Lijun Deng, Roberto Paolucci, Ioannis Anastasopoulos, and George 
Gazetas

Two in-press Data Papers to appear in EERI Spectra within a couple months
Data is already published at DataCenterHub
https://doi.org/10.13019/t0cq-qf64.
https://doi.org/10.13019/3rqyd929

52

https://doi.org/10.13019/t0cq-qf64
https://doi.org/10.13019/3rqyd929


Definition of some parameters 
documented in FoRCy and FoRDy

L/Lc ~
A/Ac
Critical 
contact 
area 
ratio
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Center for Geotechnical Modeling, University of California—Davis

Laboratory of Soil Mechanics, National 
Technical University of Athens, Greece

Large High Performance Outdoor Shake Table, 
University of California—San Diego

Foundation Engineering Laboratory, Public 
Works Research Institute, Japan

European Laboratory for 
Structural Assessment, Joint 

Research Centre, Italy

Gavras et al. 

Validation database of experiments from many laboratories
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Large High Performance Outdoor Shake 
Table, University of California—San Diego

Credits: Andreas Gavras, Marios Panagiotou, Antonellis, Restrepo, Fox et al.  57



Antonellis et al. (2015)

Key parameters
 Soil

• Sand, DR = 90%
 Structure

• Pst = 292 kN
• Hcm = 2.64 m
• L = 1.52 m   and   D = 0.66 m

 System
• Hcm / L = 1.7
• FS = 24.5   and   A / Ac = 13.5
• Cr = 0.30

 Base ground motion
• Takatori—Fault-normal  
• 1995 Kobe earthquake, Japan
• PGA = 0.79 g

 Response
• θpeak = 0.108 rad
• θres = 0.027 rad
• sres / L= -0.1%

Large-scale models tested at 1 g.

58Credits: Andreas Gavras, Marios Panagiotou, Antonellis, Restrepo, Fox, et al.  



FoRDy configurations and motions
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Definition of some parameters 
documented in FoRCy and FoRDy

L/Lc ~
A/Ac
Critical 
contact 
area 
ratio
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FoRDy
performance
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FoRCy configurations
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Key plots in FoRCy (available for every 
entry in the database).
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FoRCy: 
settlement vs 
rotation for 

various bins of 
A/AC
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Conclusions from FoRCy and FoRDy

• Rocking foundations, like beams and columns, 
can be reliable energy dissipating components of 
seismic force resisting systems.  They can reduce 
demands on the superstructure. 

• Data sharing and reuse
– A way to deal with human tendency to overlook 

limitations of their own experiments
• If you are interested in doing rocking 

experiments, please look at these databases
– Fill gaps in the database  
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FoRCy Input Data Matrix - gaps
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FoRDy Input Data Matrix - gaps

Sliding regime

Significant 
embedment, 
Low FS
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Brainstorming some research 
topics of the future

• Glacier movement: ice-water-soil-rock interaction 
problem

• Floating Cities?
• Mass transit and high speed rail
• Wind farm foundations
• Old problems and Overdue technology

– Validation of numerical methods 
– Improved site investigation and models of the 

geotechnical environments
– Accounting for uncertainty in experiments
– Particle mechanics – what is the fundamental difference 

between silt and sand?  Dealing with intermediate soils.
– Liquefaction flow mechanisms
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Ice-water-soil-rock interaction

Water pressure ~ total stress
Effective stress in till at the base of the 
glacier?
Effect of earthquake on glacier stability?
Effect on sea level? 
Ice quakes  (M ~ 5 ??)
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Closing thoughts
• Research Topic

– Imaginative, New,  Grand Challenge
– Old unsolved overlooked problems

• Validation of ability to simulate a function (not a data 
point)

• Become and expert – persistence
• Approach

– Theory / fundamental mechanics / rigor
– Small scale experiments (materials, components)
– Large scale (systems/proof of concept)
– Simulation (calibration and validation
– Implementation

• Use existing data, share your data
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Thank you for your attention
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