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*Soil-structure interaction (SSI) is coupling of structural
and soil responses

*SSl can be modeled using techniques ranging from
simple (e.g., “springs” attached to the base of
structural elements) to complex (e.g., 3D nonlinear
effective stress analysis combining soil and structural
elements).

*However, it is very often ighored. Why?
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*SSl requires effective communication between
structural and geotechnical engineers.
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*Two recent SSI research projects on topics for which
geotechnical engineers generally ignore SSI, but
including it is important:

1. Seismic earth pressures acting on flexible vertical
retaining walls

2. Influence of shallow foundations on earthquake-
induced ground failure potential
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Seismic Earth Pressures

 Mononobe-Okabe (M-0) method is most

common method utilized today. K. - cos’ (¢~ ~0) 2
* Begin with static earth pressure (e.g., K, or C°S’7C°SZ‘91+J)
K ). Resultant P,. K H?

p =g/

2

* Limit equilibrium analysis with seismic
coefficient k, (oc PGA) in Coulomb-type N
wedge. Produces P,.

* Predicts very high earth pressures when
shaking is strong.

* Empirical evidence is that retaining walls
perform well during earthquakes, even if H KL
they were not seismically designed.

%,
e
.
e,
e

* Questions:

* Does horizontal acceleration necessarily give rise
to seismic earth pressure?

* |s seismic earth pressure influenced by factors
: U 5
not considered in M-O method: Okabe (1924) and Mononobe and Matsuo (1929).
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Seismic Earth Pressures

Consider case of vertically propagating, horizontally coherent, SH

wave

Acceleration: ug(z)=—w2ugocos(\“/’—2]ei”‘ SO
s T

Inertia generated by wave resisted by mobilized shear stresses, 7, (z)

Wave produces no change in normal stresses on vertical or horizontal
planes (absent soil plasticity)

If we were to make an excavation and replace the excavated soil with
a structural system with the exact same mass and stiffness as the
excavated soil, seismic earth pressures would be zero

. Horizontal stresses have no fundamental association with
acceleration. Rather, it is relative displacement between the soil and
wall that creates earth pressure.
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Seismic Earth Pressures
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Figure 2. Schematic illustration of free-standing retaining wall subjected to seismic waves with different
wavelengths (a) wall, (b) u; (long A), and (c) u, (short A).

Durante et al. (2022), BSSC (2020).
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Seismic Earth Pressures
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Figure 3. Variation with normalized wavelength A/H of (a) normalized amplitude of Pg and (p) 1ts point
of application above the wall base for various values of BH. Dotted lines at low A/H are approximations

of exact solution. Durante et al. (2022), BSSC (2020)
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Seismic Earth Pressures
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Figure 4. Variation of median values of mean period (T,,) with magnitude, distance, and site condition
(Rathje et al., 2004).

Durante et al. (2022), BSSC (2020)
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Seismic Earth Pressures
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Figure 5. Ground motion amplitude adjustment factor for use with simplified method for evaluation of
amplitude of seismic earth pressure resultant force, PE.

Durante et al. (2022), BSSC (2020)
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Seismic Earth Pressures
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Seismic Earth Pressures
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Figure 6. Measured and predicted earth pressure coefficients, Kg, versus PGA. The “predicted” values

are from the single-frequency simplified procedure presented in this article. (a) Hushmand et al. (2016),

Test | A; (b) Hushmand et al. (2016), Test 2; (c) Hushmand et al. (2016), Test 3A; (d) Hushmand et al.

(2016), Test 4A; (e) Ostadan (2005) SASSI analyses; (f) Al Atik and Sitar (2009), Test LAAO2; (g) VWagner

and Sitar (2016), test NWO; and (h) Candia et al. (2016), test GCOI. Durante et al. (2022).
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Seismic Earth Pressures

e 22

— = (%]

= L L]
1 i 1

PFJ'I{'I(_;:;UQ UH}

0.00 , ] , ! , ! . .
(e) ostadan (2005), sasst (1) 4l atik and sitar (2009), Laao2 (2) wagner and sitar (2016), nwol (h)  candia et a1, (2016), Gcol

BH =0.0 BH =132 BH=133

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
AfH AfH AH AfH

Figure 7. Dimensionless earth pressure, Pg/ k;uggH?, versus wavelength-to-height ratio, A/H (a)

Hushmand et al. (2016), Test |A; (b) Hushmand et al. {2016), Test 2; (c) Hushmand et al. (2016), Test 3A;

(d) Hushmand et al. (2016), Test 4A; (e) Ostadan (2005), SASSI analyses; (f) Al Atik and Sitar (2009), Test

LAAO2; (g) Wagner and Sitar (2016), Test NWOI; and (h) Candia et al. (2016), Test GCOI. Durante et al. (2022).
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Seismic Earth Pressures
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Figure 7. Dimensionless earth pressure, Pg/ k;uggH?, versus wavelength-to-height ratio, A/H (a)

Hushmand et al. (2016), Test |A; (b) Hushmand et al. {2016), Test 2; (c) Hushmand et al. (2016), Test 3A;

(d) Hushmand et al. (2016), Test 4A; (e) Ostadan (2005), SASSI analyses; (f) Al Atik and Sitar (2009), Test

LAAO2; (g) Wagner and Sitar (2016), Test NWOI; and (h) Candia et al. (2016), Test GCOI. Durante et al. (2022).
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SSI Effects on Ground Failure

Free-Field Level Ground
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SSI Effects on Ground Failure

Brandenberg et al. (2022)
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SSI Effects on Ground Failure

Foundation Stresses
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Brandenberg et al. (2022)
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SSI Effects on Ground Failure
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SSI Effects on Ground Failure

Free-Field Level Ground
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SSI Effects on Ground Failure
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SSI Effects on Ground Failure
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SSI Effects on Ground Failure
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SSI Effects on Ground Failure
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Conclusions

* Soil-structure interaction problems are inherently complex
because they combine structural and geotechnical
disciplines.

* Physical modeling studies provide key insights into
fundamental mechanics that allow us to distill the problem
into digestible units, and ultimately make design
recommendations that are simple and straightforward to
iImplement.

* Publishing experimental data is extremely important to
facilitate these insights.
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Conclusions

* | presented centrifuge modeling studies today.

 Structural models are necessarily simplified due to centrifuge
scaling laws.

* There is tremendous need to validate SSI models using full-
scale experiments, like those made possible by the UCSD
shake table facility, because we are able to realistically model
structural components
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