Modular TestBed Building (MTB²): A Reconfigurable Shared-Use Equipment Resource for use by Researchers at LHPOST6

Tara Hutchinson, University of California San Diego
Chris Pantelides, University of Utah

NHERI@UC San Diego User Training Workshop

December 16-17, 2021
University of California, San Diego

“Don’t ask what your table can do for you, but ask what you can do for your table” - C. Pantelides
Outline

• Design scope
• Making it happen = Team
• Design Features
 • Pragmatic design decisions
 • Dimensional plans
 • Novel aspects of MTB²
 • Modular diaphragm
 • Nonlinear components: BRB and moment-frame connections (CP); compliant base
 • Expected performance
 • Dynamic properties
 • NL pushover behavior
• Shake-down: Staging Slab Erection
 • Is MTB² truly modular?
• Shake-down Dynamic Testing on LHPOST6 in 2022
• Opportunities for future researchers
Design Scope

• **Community-available building for NHERI users:**
 - New infrastructure to contribute to NHERI@UC San Diego & shared-users of NHERI EF
 - First structure to be tested on newly upgraded LHPOST6

• **Evolution:**
 - Community input via NHERI workshops
 - Inception from prior research & proposals to investigate NCSs
 - Partnership amongst Academe & industry (next slide)

• **Unique features:**
 - Designed to be *reconfigurable & reusable* with low-cost replaceable nonlinear fuse elements and simple removable floor system
 - Enabling low-cost testing of components & systems under simulated dynamic 3D loading
 - Provide a *vehicle to deliver seismic loads & displacements* to elements of interest
Making it Happen: Team

- University of California San Diego & University of Utah
- Industry Partners

Tara Hutchinson Gilberto Mosqueda Michael Morano Louis Lin Chris Pantelides Emily Diedrich Junwei Lui

Zane Schemmer (UCB NHERI REU)

http://chei.ucsd.edu/MTB2/index.html
Design Features

Reconfigurable 3-D full-scale three-story steel building designed to accommodate a wide range of seismic behavior of buildings:

1) Moment frame behavior with **shear fuse** type plastic hinges

2) **Compliant base** to alleviate moment demands at beam joints (coupled with 1)

3) Braced frame behavior with **buckling restrained braces** (BRBs) at built-in gusset plates at joints
Design Features: Pragmatic Decisions We Made

• All-hot rolled steel framing system
• Simple floor plan, accommodate geometry directly atop LHPOST
• Simple foundation footprint, straight-forward tie-down to LHPOST6
• Modular nonlinear fuse components
• 3-stories (not too tall; not too short; allows for tuning of dynamic properties)
• Modular diaphragm (attach to; remove and adapt)
• Readily de-erected and stored

<table>
<thead>
<tr>
<th>Item</th>
<th>BRB-1</th>
<th>SMF/SMF+CB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transverse LFRS [k]</td>
<td>13.2</td>
<td>13.2</td>
</tr>
<tr>
<td>Longitudinal LFRS [k]</td>
<td>20.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Steel Plate [k]</td>
<td>113.2</td>
<td>113.2</td>
</tr>
<tr>
<td>Modular Deck [k]</td>
<td>38.4</td>
<td>38.4</td>
</tr>
<tr>
<td>Columns + BP [k]</td>
<td>28.2</td>
<td>28.2</td>
</tr>
<tr>
<td>Beams [k]</td>
<td>17.9</td>
<td>17.9</td>
</tr>
<tr>
<td>Structural System [k]</td>
<td>231.4</td>
<td>213.4</td>
</tr>
<tr>
<td>Footings [k]</td>
<td>81.6</td>
<td>81.6</td>
</tr>
<tr>
<td>Total Weight [k]</td>
<td>313</td>
<td>295</td>
</tr>
</tbody>
</table>

Modular diaphragm: steel plate + concrete deck
Design Features: Dimensional Plans LFRS + Gravity (NS)

NS Direction: 20’ bay
Design Features: Dimensional Plans LFRS (EW)

BRB-1

SMF

EW Direction: 12’ stories; 16’ bays
Modular Concrete Deck (2x Floor Level)

5ksi Concrete Reinforced with W4xW4 at 4”x4”

VERCO 18 ga. PLW3-36 FormLok Metal Decking
 • Connected to angles via HILTI Powder Actuated Fasteners

Frame is made from welded back-to-back L5x3x1/4 and L3x3x1/4 angles
 • Bolted to beam using (16) 7/8” A325 Bolts

Construction Phase

Stacked Decks

Steel plate (4x floor) 9.4 kips each

Modular concrete deck (2x floor) 6.5 kips each

W4xW4 at 4”x4”

HILTI Powder Actuated Fasteners

8’-3”

15’-11”

Weight = 6.5 kips
Nonlinear Components of MTB2

- Replaceable, strategically placed
 - Buckling Restrained Brace (BRB)
 - Special Moment Frame (SMF)
 - Compliant Base (CB)

Buckling restrained braces
(yielding core)

Special moment frame joints (shear fuses)
(yielding shear plates)
Compliant Base

- Fixed base (fully restrained ‘complete’ anchor) vs compliant base (stretch length anchors)

Cast-in ABs

Stretch Length ABs (replaceable)
MTB2 Expected Performance (Dynamic Properties)

Summary of Modal Periods

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Mode1</th>
<th>Mode2</th>
<th>Mode3</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRB-1</td>
<td>0.24s (T)</td>
<td>0.218s (L)</td>
<td>0.145s (Tor)</td>
</tr>
<tr>
<td>SMF</td>
<td>0.487s (L)</td>
<td>0.24s (T)</td>
<td>0.169s (Tor)</td>
</tr>
<tr>
<td>SMF+CB</td>
<td>0.492s (L)</td>
<td>0.24s (T)</td>
<td>0.17s (Tor)</td>
</tr>
</tbody>
</table>
Features of behavior
• Softer, ductile SMF response
• Softer, post-yield SMF+CB response
• Stiffest, strongest configuration BRB-1
• Consistent elastic stiffness in all BRB configurations
• ~2% roof drift capacity (@BRB PL = 2.5% ε_a)
• ~4% roof drift capacity (@SMF PL = 0.05r)
• Gradual fuse-fuse (floor-floor) progression of yielding (CP discussion)
Shake-Down Staging Slab Erection

• Erection of MTB2 on the UCSD staging slab
 • Oct – Nov 2021 (BRB-1, 50% bolt-up)
 • Evaluate fit-up of all components
 • Conduct shock (tire) tests of MTB2

• Outcome:
 • ~2 days for erection
 • ~1.5 days for de-erection
 • (one) problematic BRB gusset – refabricated

December 16-17, 2021
University of California San Diego
Is MTB2 Truly Modular?

NHERI@UC San Diego Shared-Use Modular Testbed Building (MTB2)

First Erection onto Staging Slab (Configuration BRB-1)
October 19-20, 2021

NHERI@UC San Diego Shared-Use Modular Testbed Building (MTB2)

De-erection on Staging Slab (Configuration BRB-1)
November 18-19, 2021

December 16-17, 2021 University of California San Diego
Shock (Tire) Tests

Shock (Tire tap) Locations

Typical Floor Accelerometer Layout

ETabs

T=0.225s T=0.204 T=0.137s

System Identification

T=0.279s T=0.229s T=0.160s
Shake-down Dynamic Testing on LHPOST6 in 2022

- Test Protocol
 - Three configurations: SMF, SMF+CB, BRB-1
 - One significant (swap) of LFRS (SMF -> BRB)
 - ~180 sensors
 - White noise, sequenced X, XY, XYZ base excitation
 - Motions selected from upgrade (acceptance) tested suite: (Kobe, Takatori & Northridge Rinaldi)
 - Performance limits: service (elastic), service (quasi-elastic), design (near-fuse limit states)

December 16-17, 2021

University of California San Diego
Future Research Opportunities with MTB²

• Test nonstructural components and systems
 • Vertically spanning, e.g. stairs, cladding, elevators
 • Floor-mounted, hung (suspended)
 • Integrate protective strategies
Future Research Opportunities with MTB2

- Test alternative LFRS
 - Conventional walls, integrated with fuse elements
 - Isolation systems (elevate MTB2)
 - Alternative BRBs, alternative SMF
Thank you!

Contact: tara@ucsd.edu

"Now, with only his hands and a computer keyboard, our next speaker is going to rock your world."

© andreusenn - Fotolia.com