

National Science Foundation University of California at San Diego NHERI VIII Natural Hazards Engineering Research Infrastructure

Modular TestBed Building (MTB²): A Reconfigurable Shared-Use Equipment Resource for use by Researchers at LHPOST6

Tara Hutchinson, University of California San Diego Chris Pantelides, University of Utah

NHERI@UC San Diego User Training Workshop

December 16-17, 2021 University of California, San Diego

"Don't ask what your table can do for you, but ask what you can do for your table" - C. Pantelides

Outline

- Design scope
- Making it happen = Team
- Design Features
 - Pragmatic design decisions
 - Dimensional plans
 - Novel aspects of MTB²
 - Modular diaphragm
 - Nonlinear components: BRB and moment-frame connections (CP); compliant base
 - Expected performance
 - Dynamic properties
 - NL pushover behavior
- Shake-down: Staging Slab Erection
 - Is MTB² truly modular?
- Shake-down Dynamic Testing on LHPOST6 in 2022
- Opportunities for future researchers

December 16-17, 2021

Design Scope

• Community-available building for NHERI users:

- New infrastructure to contribute to NHERI@UC San Diego & sharedusers of NHERI EF
- First structure to be tested on newly upgraded LHPOST6
- Evolution:
 - Community input via NHERI workshops
 - Inception from prior research & proposals to investigate NCSs
 - Partnership amongst Academe & industry (next slide)

• Unique features:

- Designed to be reconfigurable & reusable with low-cost replaceable nonlinear fuse elements and simple removable floor system
- Enabling low-cost testing of components & systems under simulated dynamic 3D loading
- Provide a *vehicle to deliver seismic loads & displacements* to elements of interest

Making it Happen: Team

- University of California San Diego & University of Utah
- Industry Partners

Tara Hutchinson

UC San Diego

Gilberto Mosqueda

Michael Morano

Louis Lin

Chris Pantelides

Emily Diedrich

Junwei Lui

JACOBS SCHOOL OF ENGINEERING

Zane Schemmer (UCB NHERI REU)

http://chei.ucsd.edu/MTB2/index.html

December 16-17, 2021

Additional Industry Partners

Design Features

Reconfigurable 3-D full-scale three-story steel building designed to accommodate a wide range of seismic behavior of buildings:

- 1) Moment frame behavior with shear fuse type plastic hinges
- 2) Compliant base to alleviate moment demands at beam joints (coupled with 1)
- 3) Braced frame behavior with **buckling restrained braces** (BRBs) at built-in gusset plates at joints

Design Features: Pragmatic Decisions We Made

- All-hot rolled steel framing system
- Simple floor plan, accommodate geometry directly atop LHPOST
- Simple foundation footprint, straight-forward tiedown to LHPOST6
- Modular nonlinear fuse components
- 3-stories (not too tall; not too short; allows for tuning of dynamic properties)
- Modular diaphragm (attach to; remove and adapt)
- Readily de-erected and stored

Veight Distribution						
vergint Distribution	Longitudinal LFRS					
Item	BRB-1	SMF/SMF+CB				
Transverse LFRS [k]	13.2	13.2	1			
Longitudinal LFRS [k]	20.5	2.5	1			
Steel Plate [k]	113.2	113.2	1			
Modular Deck [k]	38.4	38.4	1			
Columns + BP [k]	28.2	28.2	1			
Beams [k]	17.9	17.9	1			
Structural System [k]	231.4	213.4	~			
Footings [k]	81.6	81.6	1			
Total Weight [k]	313	295	- ←			

Modular diaphragm: steel plate + concrete deck

December 16-17, 2021

Design Features: Dimensional Plans LFRS + Gravity (NS)

Design Features: Dimensional Plans LFRS (EW)

December 16-17, 2021

University of California San Diego

9

Modular Concrete Deck (2x Floor Level)

University of California San Diego

December 16-17, 2021

Nonlinear Components of MTB²

• Replaceable, strategically placed

• Buckling Restrained Brace (BRB)

2

• Special Moment Frame (SMF)

1

• Compliant Base (CB)

Strain [%]

-1

<u>Special moment frame</u> <u>joints (shear fuses)</u> (yielding shear plates)

Buckling restrained braces

(yielding core)

December 16-17, 2021

-3 100 _

Stress [ksi]

-2

Compliant Base

• Fixed base (fully restrained 'complete' anchor) vs compliant base (stretch length anchors)

December 16-17, 2021

MTB² Expected Performance (Dynamic Properties)

Summary of Modal Periods

Configuration	Mode1	Mode2	Mode3
BRB-1	0.24s (T)	0.218s (L)	0.145s (Tor)
SMF	0.487s (L)	0.24s (T)	0.169s (Tor)
SMF+CB	0.492s (L)	0.24s (T)	0.17s (Tor)

MTB² Expected Performance (NL Pushover Behavior)

Features of behavior

- Softer, ductile SMF response
- Softer, post-yield SMF+CB response
- Stiffest, strongest configuration BRB-1
- Consistent elastic stiffness in all BRB configurations
- ~2% roof drift capacity (@BRB PL = 2.5% ε_a)
- ~4% roof drift capacity (@SMF PL = 0.05r)
- Gradual fuse-fuse (floor-floor) progression of yielding (CP discussion)

ETabs FE Model NL Pushover results

Shake-Down Staging Slab Erection

• Erection of MTB² on the UCSD staging slab

- Oct Nov 2021 (BRB-1, 50% bolt-up)
- Evaluate fit-up of all components
- Conduct shock (tire) tests of MTB²
- Outcome:
 - ~2days for erection
 - ~1.5days for de-erection
 - (one) problematic BRB gusset refabricated

December 16-17, 2021

Is MTB² Truly Modular?

December 16-17, 2021

Shock (Tire) Tests

Shake-down Dynamic Testing on LHPOST6 in 2022

Test Protocol

- Three configurations: SMF, SMF+CB, BRB-1
- One significant (swap) of LFRS (SMF -> BRB)
- ~180 sensors
- White noise, sequenced X, XY, XYZ base excitation
- Motions selected from upgrade (acceptance) tested suite: (Kobe, Takatori & Northridge Rinaldi)
- Performance limits: service (elastic), service (quasielastic), design (near-fuse limit states)

December 16-17, 2021

Future Research Opportunities with MTB²

Future Research Opportunities with MTB²

- Test alternative LFRS
 - Conventional walls, integrated with fuse elements
 - Isolation systems (elevate MTB²)
 - Alternative BRBs, alternative SMF

Thank you!

Contact: tara@ucsd.edu

