

National Science Foundation

Structural Systems: List of Open Issues and Scope of Problems Example Use of Facilities to Address Scientific Needs

Jose I. Restrepo, Professor in Structural Engineering UC San Diego

NHERI@UC San Diego User Training Workshop

December 15-16, 2022 University of California, San Diego

- 1. Grand Challenges in Structural Earthquake Engineering
- 2. Example Projects:
 - Case Study 1: NSF GOALI: Development of a Seismic Design Methodology for Precast Floor Diaphragms (DSDM)
 - Case Study 2: NSF NEES: Inertial Force-Limiting Anchorage Systems (IFAS)

Part 1

Grand Challenges in Structural Earthquake Engineering

Grand Challenges in Structural Earthquake Engineering

7/29 M_w 6.4, 8/5 M_w 7.0, 8/9 M_w 6.2 & 8/19 M_w 6.5 + M_w 6.9 2018 Lombok Is. Earthquake Swarm, Indonesia

https://www.theatlantic.com/photo/2018/08/images-from-the-lombok-island-earthquake/567158/

Tsunami Refuge Center, Pamenang, Lombok

Grand Challenges

- Experimental research in structural earthquake engineering has shifted from isolated characterization testing of components:
 - System Behavior & System Interactions
 - Old and Vulnerable Systems
 - Low-Damage, Protective, and Smart Systems
 - Non-structural Components and Contents
 - Sensors and Monitoring
 - Risk Assessment and Hazard Mitigation
 - Multi-Hazard, Multi-scale Investigations
 - Model calibration

System Behavior & System Interactions

Complex System Behaviors:

- Tall Buildings
- Discontinuities (e.g., Transfer Conditions)
- Diaphragm action, Tie-back Effects
- Construction staging effects Topdown Construction
- Structural Irregularity in Plan, Vertical Offsets
- Better understanding of SSI

System Behavior & System Interactions

Model Calibration

Involve practicing engineers and researchers to participate in blind prediction contests followed up by workshops

Low-damage Systems

PRESSS Capstone Test by Priestley et al. – UC San Diego 1999

Part 2 Example Projects

NSF GOALI: DSDM

NSF NEESR: IFAS

PCI DSDM & IFAS PROJECTS

- Multi-University Research Projects
- U. Arizona, Lehigh & UCSD co-PIs and Grad Students
- Full- or Large-Scale Testing
- Strong Simulation Component
- Design Consultant Oversight
- Industry Partners
- General Topic: Floor Diaphragms

Project 1: NSF GOALI - DSDM

Development of a Seismic Design Methodology for Precast Floor Diaphragms (DSDM) 2005-2009

UC San Diego

DSDM Research Team

Precast Concrete Diaphragms

Diaphragm action carries seismic forces horizontally in the floor slab to walls and frames... Precast floor diaphragms have shown a vulnerability in past earthquakes...

Rationale for Large Scale Laboratory Testing

• Rationale for laboratory testing:

- Limited information existed on the characteristics of precast diaphragm connectors
- No information on the response of precast diaphragm connectors under nonproportional shear and tension
- No models existed for the nonlinear or non-ductile response of precast floor diaphragm systems

• Rationale for ATLSS Laboratory:

- Ability to create multi-axis control for cyclic shear, tension/compression, and positive/negative moment
- Ability to perform hybrid testing to develop realistic combinations of force, and adapt as the joint and connectors degrade.

Rationale for Large Scale Shake Table Testing

• Rationale for shake testing:

- Boundary Conditions of a distributed system such as a diaphragm do not lend themselves to concentrated actions (e.g., from actuators)
- Finite Element Analysis can produce realistic boundary conditions, but *calibrated* models are required for code change.

• Rationale for NEES@UCSD Shake Table:

- Scaling of precast elements, reinforcement and connectors has lower limit of 1/3rd to ½ scale before testing details become "toys"
- Observed diaphragm failures in precast diaphragms have historically occurred in longer span floor decks

Research Flow

System Level (UCSD)

- Diaphragm Inertial Forces
- Flexible Diaphragm Structures

Diaphragm Level (UA)

- Diaphragm Capacity
- Diagram Load Paths & Limit States

Detail Level (LU)

- Connector Properties
- Connector Classification

Full-Scale Detail Tests

Practical Considerations

Shake Table Test

Analytical Simulation

DSDM Project Outcome

- **Deliverable**: A new seismic design methodology for precast concrete diaphragms.
- **Outcome**: New design provisions approved for inclusion in **ASCE 7**-**16** and Part 3 of the **2015 NEHRP Provisions**.

2016 ASCE Pankow Award for Innovation

Project 2: NEESR IFAS

NEESR: Inertial Force-Limiting Floor Anchorage Systems for Seismic Resistant Building Structures (IFAS)

NEES @ UCSD

NEES @ Lehigh

UC San Diego

IFAS Project Team

Academic collaborators

Dr. Robert Fleischman, PI Zhi Zhang, Ph.D. student Ulina Shakya, Ph.D. student *Anshul Agarwal* Austin Houk, REU Scott Kuhlman, REU Mackenzie Lostra, REU Daniel Lizarraga, REU Fernando Gastelum, REU Patrick Hughes, REU Ziyi Li, REU

University of California, San Diego

Dr. Jose Restrepo, Co-PI Arpit Nema, Ph.D. student *Gabriele Guerrini* David Duck, Nelson Angel Armita Pebdani Steve Mintz, Ph.D. student

Lehigh University

Dr. Richard Sause, Co-PI Georgios Tsampras, Ph.D. student Alronil Pacheco, REU (San Jose State University)

Dr. Dichuan Zhang

Dr. Beppe Marano Dr. Giuseppe Quaranta

University of Rome

Dr. Giorgio Monti Dr. Alessandro Scodeggio

Rutherford +
ChekeneMaffei EngineersSaeed FathaliJoseph MaffeiTipping Mar

Seismic Design

Consultants

David Mar

Student Participation

UCSD PhD

IFAS Concept

- Provides a deformable (ductile) connection between the floor system (GLRS) and the primary vertical plane LFRS elements (e.g., shear walls, braced frames)
- Designed with a predefined design strength (F_y) to partially uncouple the GLRS and the LFRS
- The structure acts as a traditional structure for daily loads

IFAS Concept

- The IFAS will reach its design strength in a strong earthquake...
- ...and deform, thereby transforming the seismic demands into relative displacement between the GLRS and the LFRS...
- ...dissipating energy and lowering seismic demands

IFAS Concept

IFAS Components

Subassemblage Testing: NEES@Lehigh

Full-Scale IFAS Testing: RB

Full-Scale IFAS Testing: FD

Carbon Fiber Reinforced RB

FD

Full-Scale IFAS Testing: FD

Bumper Impact Tests: NHERI@Lehigh

Bumper Impact Tests: NHERI@Lehigh

Analytical Research

Shake Table Test Structure

4-story reinforced concrete building

- Half-scale
- Provide direct comparison between IFAS and traditional
- Rocking Walls for repeatability

Shake Table Test Specimen

Test specimen description

• LFRS eccentricity was purposely introduced for torsional response

IFAS Shake Test Installation

Instrumentation

Story 3

Story 2

Story 1

IFAS Shake Table Response: NEES@UCSD

Shake Table Test Response

Bumper behavior

Shake Table Testing: NEES@UCSD

Shake Table test Rocking of Main(North) wall

PHASE I VS PHASE II

Shake Table Testing: NEES@UCSD

Berkeley BE05 MCE Traditional system vs IFAS

PLAN VIEW COMPARISON

December 15-16, 2022

Acknowledgements

A significant portion of this presentation was provided by Prof. Robert Fleischman of the University of Arizona, and PI in the NSF GOALI DSDM and NSF NEESR IFAS research projects.

Questions