IT Resources, Cybersecurity, Instrumentation, and DAQ

Koorosh Lotfizadeh, UC San Diego

NHERI@UC San Diego User Training Workshop

December 16-17, 2021
University of California, San Diego
NHERI Operations Personnel
IT Infrastructure and Cybersecurity
➢ UPS to provide “clean” power to DAQ and provide buffer in event of power outages

➢ Off-site data backup for redundancy

➢ Cyber security audits
 ➢ Weekly audits by UC San Diego IT security department
 ➢ Network vulnerability scanning and penetration testing

➢ Security cameras and locks for physical security
NHERI@UC San Diego EF equipped with gigabit LAN

Secure high-speed Wi-Fi available throughout facility

Two independent networks for security

- General facility network connected to the internet for users, accessible from anywhere
- DAQ and video local network, restricted to key personnel and not accessible from the outside
Realtime Monitoring of Subsystems
Accumulator Bank Pressure Monitoring

- Accumulator banks
 - 75 bottles total, 15 skids with 5 bottles each
 - 130 gallons each
 - 3000 psi minimum Nitrogen pressure in each bottle in idle condition

- Pressure changes throughout the day with ambient temperature fluctuations

- Wireless real-time monitoring of pressure and temperature in each bottle
 - Equipped with wireless Sensonode Gold
 - Data captured by wireless gateway and passed to SQL server
 - Web-based user interface for local or remote monitoring
➢ Real-time health monitoring of HPUs

➢ Protect system performance
 ➢ Minimize system downtime
 ➢ Minimize likelihood of expensive catastrophic events

➢ Monitor various critical metrics
 ➢ HPU temperature
 ➢ Heat exchanger water saturation
 ➢ Fluid contamination
 ➢ Current and energy consumption
 ➢ High-pressure and return filtration effectiveness

➢ Secure server infrastructure, highly scalable
 ➢ SSL/TLS AES 256-bit encryption
Instrumentation and Data Acquisition System
Objectives

- Provide quality management system
- Provide nationally and internationally recognized testing data and reports
- Maintain a calibrated sensor and equipment inventory

Documentation

- Documentation master log file
- General documentation
- Standard operation procedures
- In-house calibration procedures
- Sensory inventory
- Equipment inventory
- Calibration reports

Instrumentation and Data Acquisition

Accelerometers

Displacement transducers

Accelerometer linearity

Reference equipment
Instrumentation and Data Acquisition

- **Instrumentation available:**
 - 205 MEMS-Based Accelerometers (±5g and ±10g)
 - 142 Linear Displacement Transducers (2 to 20 in)
 - 119 String Potentiometer Displacement Transducers (2 to 60 in)
 - 4 Load Jacks
 - 31 Load Cells (up to 20,000 lbs)
 - 32 Soil Pressure Transducers

- **GPS System:**
 - 3 Receivers Operating at 50 Hz
 - RTD_NET Software by Geodetics

- **Cameras:**
 - Drones (DJI Phantom 4 Pro)
 - GoPro Cameras (4K and 1080p)
 - End-to-end Live Video Streaming Production System
Old DAQ system was obsolete with many non-functional channels

One of three selected by the University for MRI

Highly competitive, we were granted MRI for new state-of-the-art DAQ

- Acquisition of a High-Performance Data Acquisition System to Enable Experimental and Computational Research on the System Level Response of the Built Environment

 PI: Lelli Van Den Einde
 Co-PIs: Joel Conte, Veronica Eliasson, Machel Morrison, Jose Restrepo

 CMMI #: 2020745
 $868,148 (Total) = $607,704 (NSF) + $260,444 (UCSD Cost-Sharing)

Data Acquisition System:

- Expected lifespan of 15+ years
- 12 DAQ “Nodes”
- 64 channels in each node
- 24 bit analog to digital resolution
- 25 kS/sec simultaneous sampling per channel
- Readily scalable

Will enable NHERI@UC San Diego to continue the collection of invaluable seismic response data, at yet a higher level of resolution and accuracy
1.1: PXIe-1092 Chassis
1.2: PXIe-8861 Controller Running LabView DAQ Software
1.3: 8 GB DDR4 RAM
1.4: Standard Service Program for PXI Systems
1.5: Window 10 IoT Enterprise
1.6: PXIe-4339 DAQ and Signal Conditioning Module
1.7: RM-4339 Rackmount Terminal Block
1.8: SH-96-96-2 Cable for PXIe-4339 to Terminal Block

Legend:

Data Acquisition System

TO SENSORS
(64 channels per chassis)

(1.1)
(1.2)
(1.3) (1.4) (1.5) inside
(1.7) x 3
(1.8) x 8
(1.6) x 8

110 V

(1.9)
Data Acquisition System

To/From Ethernet Network

PXIe-1092 Chassis with 1 PXIe-8861 Controller & 8 PXIe-4339 Modules

3 RM-4339 Terminal Blocks
Data Acquisition System
Website and Social Media
FACILITY OVERVIEW

The National Science Foundation-sponsored Natural Hazard Engineering Research Infrastructure (NHERI) Experimental Facility at the University of California, San Diego will provide a large, high performance, outdoor shake table (LAPPOST) to support research into structural and geotechnical earthquake engineering. Earthquakes have had considerable destructive effects on society in terms of human casualties, property and infrastructure damage, and economic losses. Building a multi-hazard, disaster resilient, and sustainable environment requires the understanding and ability to predict more reliably the strength and response of buildings, critical facilities, lifelines, and other civil infrastructure systems to these extreme events. This facility will enable research, with extensively instrumented large-scale, full-scale structural, geotechnical, and soil-foundation-structural systems tested under extreme earthquake loads, to produce the experimental data essential to advancing predictive seismic performance tools. Research experiments performed using LAPPOST will provide valuable insights into the dependence on parameters for optimal seismic performance of civil infrastructure systems. The LAPPOST, with its distinctive platform that is 12.2 meters long by 7.8 meters wide, has performance characteristics that allow the accurate reproduction of near- and far-field earthquake ground motion. The facility will support seismic testing, near real-time control of large-scale, multi-structural, multi-environmental, geotechnical, and geosystemic systems, as well as soil-foundation-structural systems. It can support a weight of 20 MN. Two large shake tables can be used in conjunction with the shake table to investigate the seismic response of soil-foundation-structural systems. Software and hardware are available to support hybrid testing with substructures on the shake table. Systems tested at the facility can utilize extensive data-acquisition and instrumented capabilities, including a broad array of data-loggers, accelerometers, and high-definition video cameras, to support decayed monitoring, through hundreds of data channels, of the system response. The dedicated finite-element computer systems that will progressively shift the current reliance on physical testing into software-based simulation for the seismic design and performance assessment of civil infrastructure systems. These simulation tools will directly benefit the full realization of performance-based design to evaluate and reduce the risks of the built environment to natural hazards. This shake table facility can provide the validation tools for retrofit methods, protective systems, and the use of new materials, components, systems, and construction methods for resilient and sustainable civil infrastructure.

See our Science Plan for more information on research that can be conducted using LAPPOST.

Visit us: ucsd.designsafe-ci.org
Visit us: nheri.ucsd.edu

Navigation toolbar for additional information

Livestream of daily activities at LHPOST6
NHERI@UC San Diego Workshop Survey
➢ Survey is completely anonymous
➢ Can leave your email if you would like us to contact you
➢ Will give us feedback to improve delivery of future workshops

https://docs.google.com/forms/d/e/1FAIpQLSfe5UiaSgzqJJ7hvXBTG0cG0ipUsAP_sjo6VmdXx4m5kr0CmQ/viewform
Thank you!