

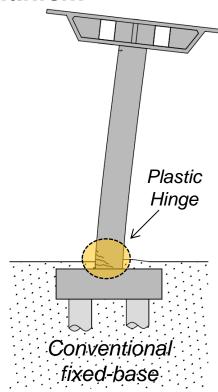
Example of Total Project Planning – Case Study 2: "Geo-Structures"

Andreas-Gerasimos Gavras, Ph.D. Student
University of California, Davis
December 14, 2015

Example of Total Project Planning – Case Study 2: "Geo-Structures"

Objectives

- This is not a technical research presentation!
- Share my experience with large-scale testing at UC San Diego using the Large Soil Confinement Box (LSCB) to study a dynamic soil-structure interaction problem


Potential Outcomes

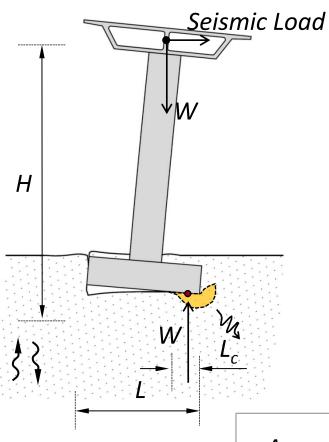
- If you already have a specific test in mind, you might now know something more about the specific steps involved in designing, constructing and testing your idea, and the various decisions you have to make
- If you don't have a specific test in mind, perhaps you will become more aware about the facility's capabilities to envision new tests

Outline

- Project Description
- Test Design
- > Experiment Assembly and Construction
- Material Testing
- Instrumentation
- Seismic Testing Protocol
- Test Response
- Concluding Remarks

Rocking Foundations as an Earthquake Damage Resistant Mechanism

- Why Large-scale 1g Testing of Rocking Foundations at UCSD?
 - Both large-scale 1g and centrifuge testing do not come without shortcomings
 - Confirm findings from previous centrifuge tests. Will they be different at large-scale?
 - Examine response at large rotations / drift ratios
- We also wanted to study
 - Effect of ground water table proximity to the rocking footing
 - Non-planar rocking response
 - (Rocking piled foundations)

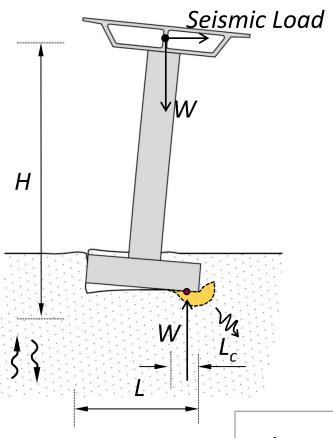

	1g			Centrifuge
Test Type	Full-scale	Large-scale	Small-scale	Reduced-scale
Testing frequency of geo-structural systems	7/	1////		
General scaling laws		<u>:</u>		
Relative scaling of soil particles	00	\odot	$\stackrel{\smile}{=}$	<u></u>
Realistic soil construction	00	$\stackrel{\hookrightarrow}{=}$	$\stackrel{ullet}{=}$	<u>:</u>
Realistic superstructural material	00	\odot		8
Cost		8	\odot	<u>:</u>
Previous tests on rocking foundations		8	\odot	\odot

- "Analytical and Experimental Development of Bridges with Foundations Allowed to Uplift During Earthquakes"
 - Award Amount: \$741,479 (50% spent for the experiment)
 - Funding: California Department of Transportation (Caltrans)
 - Period of Contract: February 2013 July 2015
- Project Components
 - Experimental response of single bridge columns
 - Numerical modeling validation for single bridge columns
 - Parametric study of single bridge columns
 - System-level analysis of two realistic, archetype bridges
 - Displacement-based design method and guidelines for single bridge columns and bridge systems

Project Team

- Principal Investigators
 - ✓ Marios A. Panagiotou (formerly UC Berkeley)
 - ✓ Bruce L. Kutter (UC Davis)
 - ✓ Jose I. Restrepo (UC San Diego)
 - ✓ Patrick J. Fox (formely UC San Diego)
 - ✓ Stephen Mahin (UC Berkeley)
- Graduate Student Researchers
 - ✓ Grigorios Antonellis (formerly UC Berkeley)
 - ✓ Andreas-Gerasimos Gavras (UC Davis)
 - ✓ Gabriele Guerrini (formerly UC San Diego)
 - ✓ Andrew C. Sander (UC San Diego)

Rocking Foundations' Response Controlling Parameters


Controlling Parameters

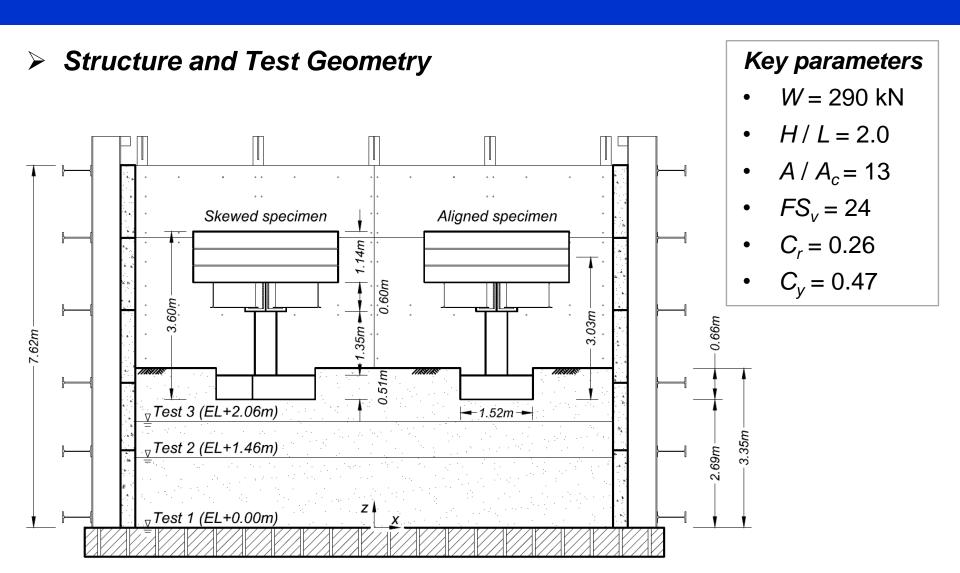
- Normalized-moment-to-shear ratio, H/L
 - ✓ Rocking vs. sliding and moment-to-shear coupling
 - ✓ H/L > 1.5 indicates rocking-dominated response
- Critical contact area ratio, A / A_c
 - ✓ Recentering vs. energy dissipation, residual rotations and settlements
 - \checkmark A / A_c > 8 to minimize settlement
- Rocking base strength ratio, C,
 - ✓ Peak rotations and overturning stability
- Absolute size, H
 - ✓ Peak rotations and overturning stability for given H/L

$$\frac{A}{A_c} = \frac{q_c}{q} \qquad M_{foot} \square \frac{W \cdot L}{2} \cdot \left(1 - \frac{A_c}{A}\right) + P_p \cdot \frac{D}{3} + k \cdot P_p \cdot \frac{L}{2} \qquad C_r = \frac{M_{foot}}{H \cdot W}$$

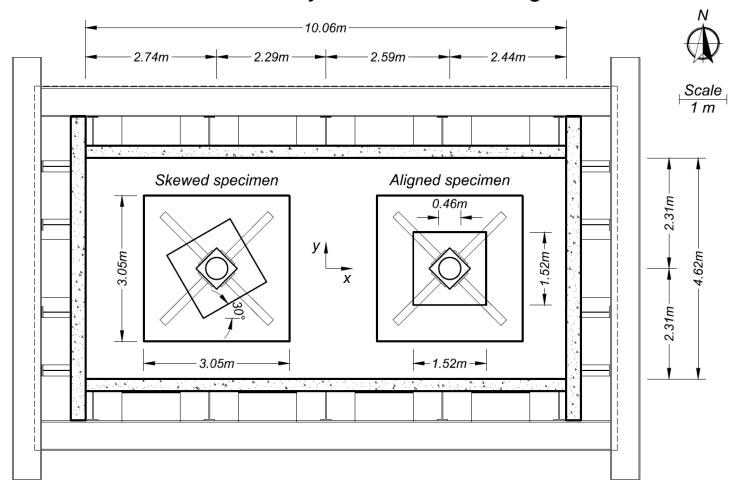
$$C_r = \frac{M_{foot}}{H \cdot W}$$

Rocking Foundations' Response Controlling Parameters

Prototype vs. Model

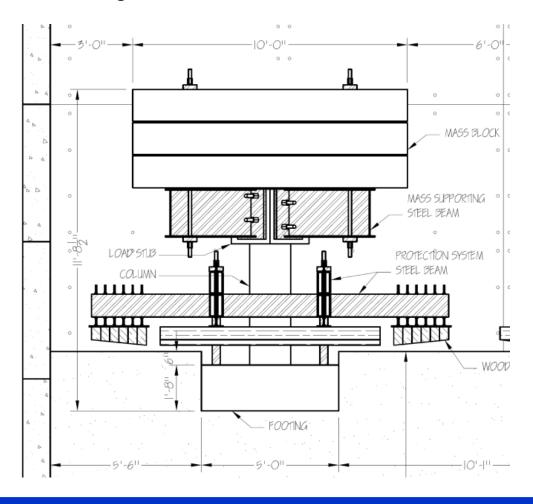

For
$$S_a = 1$$
, $L_p = S_L \times L_m$ and $W_p = (S_L)^2 \times W_m$

- $L_p \gg L_m$
- $(H/L)_p = (H/L)_m$ (correct scaling)
- $q_p = q_m$
- $(q_c)_p >> (q_c)_m$ (due to strong dependency of sand bearing capacity to actual footing size)
- $(A/A_c)_p >> (A/A_c)_m$ (prototype has significantly better recentering)
- $(C_r)_p \sim (C_r)_m$ (prototype is slightly stronger statically)

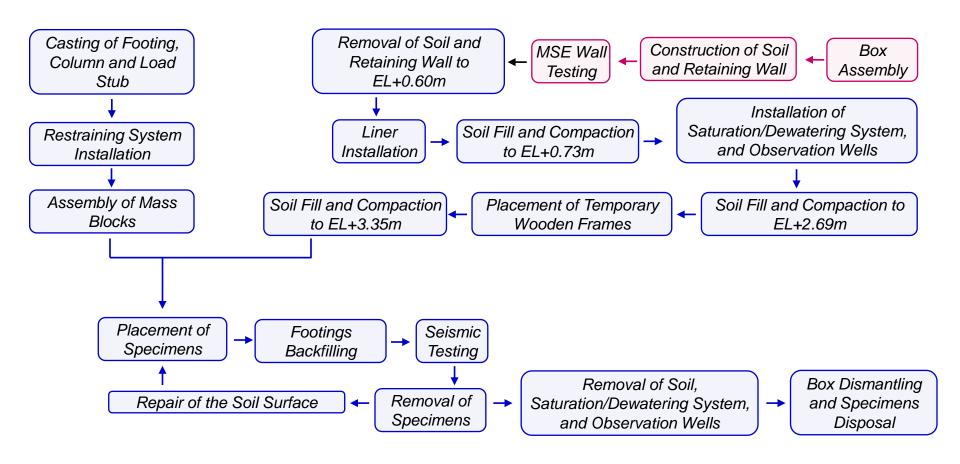

$$\frac{A}{A_c} = \frac{q_c}{q} \qquad M_{foot} \square \frac{W \cdot L}{2} \cdot \left(1 - \frac{A_c}{A}\right) + P_p \cdot \frac{D}{3} + k \cdot P_p \cdot \frac{L}{2} \qquad C_r = \frac{M_{foot}}{H \cdot W}$$

Design Approach

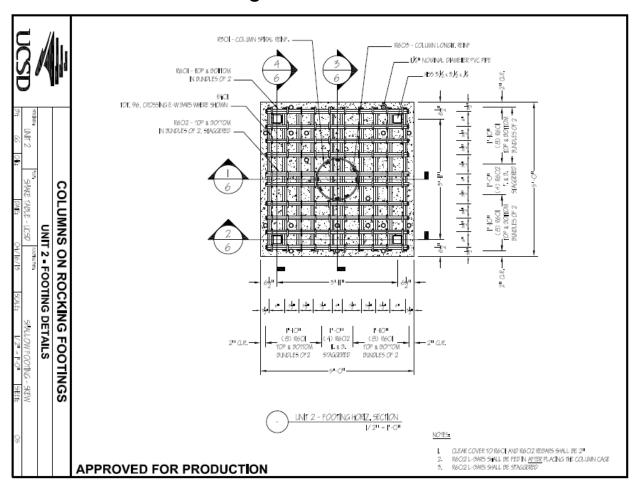
- Superstructure
 - ✓ Structural 1g scaling laws used as a guidance to design superstructure based on the Restrepo et al. (2010) full-scale bridge column test and the available PEER mass blocks
 - ✓ Length scale factor, $S_L = sqrt(W_{ss m}/W_{ss p}) = 1/3$
 - ✓ Time scale factor, $S_t = \operatorname{sqrt}(S_L / S_a) = \operatorname{sqrt}(1/3 / 1) = 0.577$
- Rocking foundation
 - ✓ Designed directly in model-scale to $C_r = 0.26$, $A / A_c = 8-15$ and H / L > 1.5
 - ✓ Obtained response is representative of the tested model and not of a prototype
- Soil deposit
 - ✓ Sand with target relative density of 80%+ to represent competent soil conditions
 - ✓ Sufficiently deep soil profile to minimize boundary effects from the shake table platen



- Structure and Test Geometry
 - 2 structures tested concurrently with different footing orientation


Restraining System

To prevent overturning and collision of the mass blocks with the box



Simplified Construction Flowchart

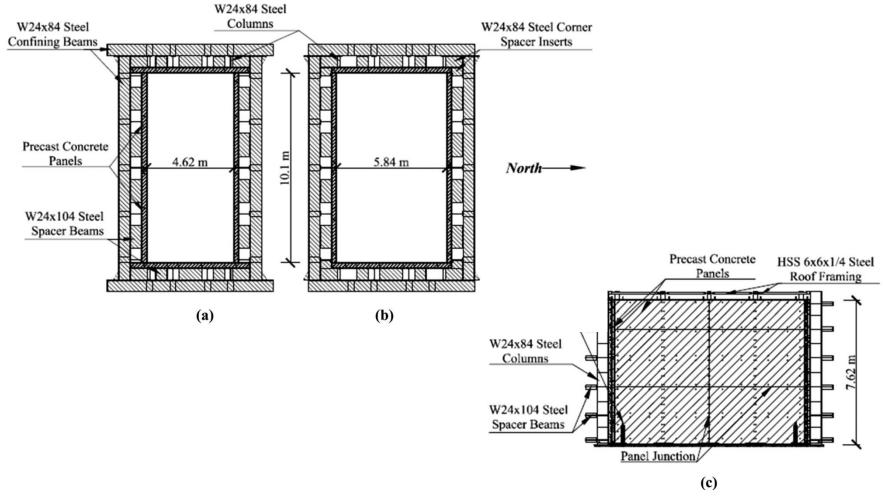
- Casting of footings, columns and load stubs
 - Detailed Construction Drawings

Casting of footings, columns and load stubs

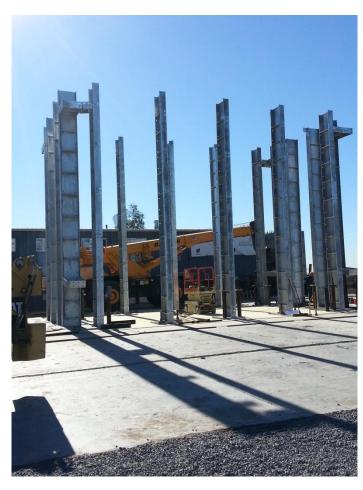
Restraining System Assembly

Specimens and Restraining System Construction

Placement of mass support steel beams



Placement of mass blocks


Completed specimen

Large Soil Confinement Box

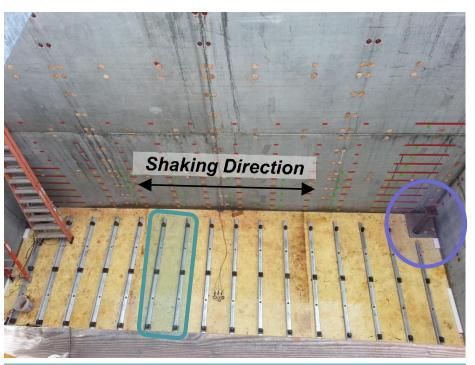
[Source: Fox et al. (2015), Geotechnical Testing Journal]

- Large Soil Confinement Box
 - Erection of Vertical Elements and Post-Tensioning to the Shake Table Platen

- Large Soil Confinement Box
 - Placement of Concrete Panels

Time Lapse Video of Assembly

- Large Soil Confinement Box
 - Exterior Views of Assembled Box



Large Soil Confinement Box

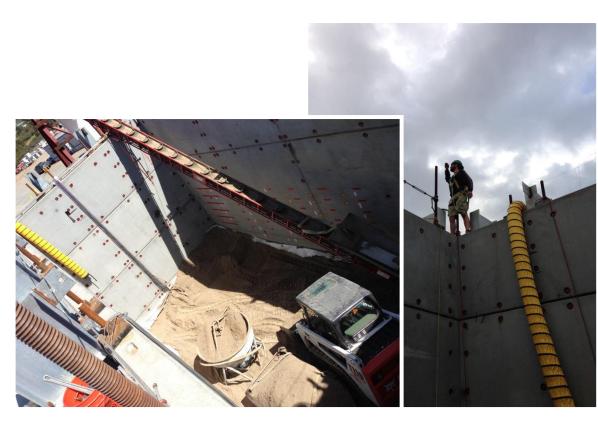
Interior Views of Assembled Box

16 steel angles bolt to the platen to provide noslip condition at the bottom boundary

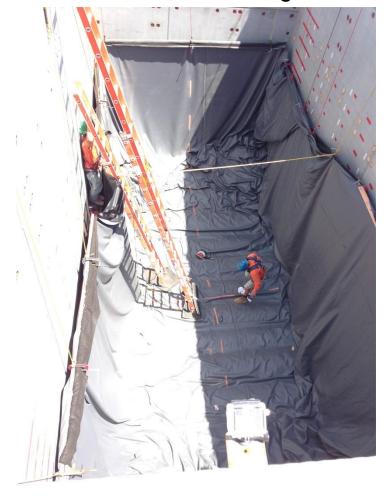
4 PT rods running through the parts of corner column base plates sticking into the box

Soil Filling and Removal

- Series of Conveyor Belts
 - ✓ Economic, but slow process

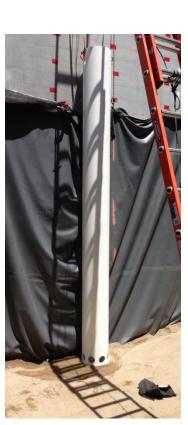


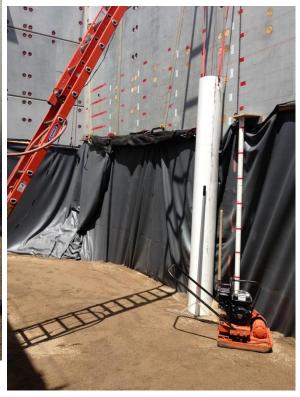
- Soil Filling and Removal
 - Use of concrete hoppers/buckets and facility's crane
 - ✓ Faster process, but less economic due to crane usage


Liner

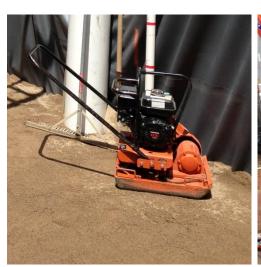
• Preparation Before Placement

> Liner


Placement and Patching



Saturation and Dewatering System

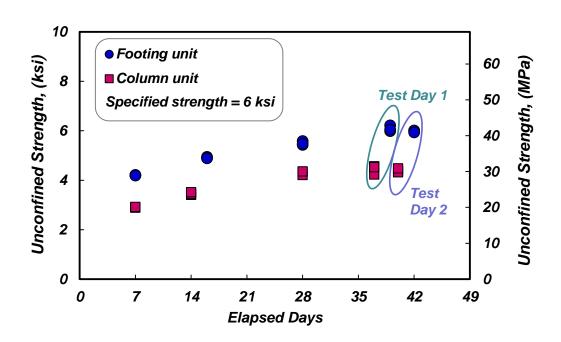


Soil Compaction

- Loose lifts of 200 mm thick compacted at a water content of 6% down to about 150 mm
- Walk-behind vibratory plate with 8 passes per lift
 - ✓ First 4 lifts after placement of liner and saturation/dewatering system
 - ✓ Lifts above the footings' base elevation
 - ✓ Near box walls (in general)

Skid-steer loader with an attached vibratory roller (1.22 m wide, 7.95 kN heavy vibrating at 40 Hz) with 6 passes per lift

> Testing Cycle

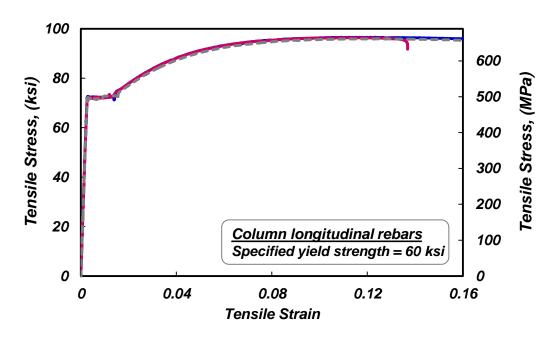


Material Testing

Material Testing

Concrete

- Slump tests taken prior to casting
- Cylindrical samples taken for UC tests from the footing and column batches to be tested 1, 2, and 4 weeks after casting and at Test Days 1 and 2



Reinforcing Steel

- 3 samples taken for tension tests from each of
 - ✓ Footing main rebars
 - ✓ Column longitudinal rebars
 - ✓ Column spiral
 - ✓ Load stub J-bar stirrups
 - ✓ Load stub staples

> Soil Properties Overview

• Clean, angular, poorly-graded medium sand (ASTM C33 washed concrete sand))

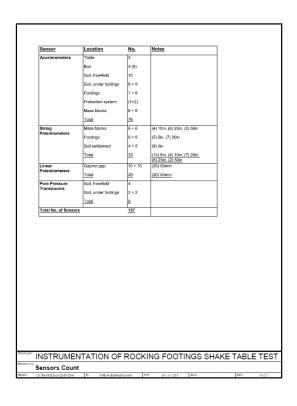
Classification		SP
Gravel content	[%]	0
Fines content	[%]	2.8
Specific gravity, G _S		2.63
Grain size, D_{50} (D_{10})	[µm]	737 (186)
Coefficient of uniformity, $C_{\rm u}$		5.3
Coefficient of curvature, C_c		0.9
Dry unit weight, $\gamma_{d,min}$ ($\gamma_{d,max}$)	$[kN/m^3]$	14.41 (17.72)
Void ratio, e_{max} (e_{min})		0.790 (0.456)
Constant-volume friction angle, ϕ_{cv}	[deg.]	≈ 33

Considered Methods for Measuring In-situ Relative Density (D_R)

- Sand Cone Test
 - ✓ Easy and cheap; can be done by the students
 - ✓ Also measures water content
 - ✓ High user uncertainty for D_R measurements; can yield scattered results
 - ✓ Two measurements possible per day; results available after 24h
- Cone Penetration Test
 - ✓ Back-calculates D_R and effective friction angle
 - ✓ Needs to be conducted by subcontractors; more expensive, logistic / time issues
- Nuclear Density Gage
 - ✓ Accurate measurement of D_R
 - ✓ Needs to be conducted by subcontractors; more expensive, logistic / time issues

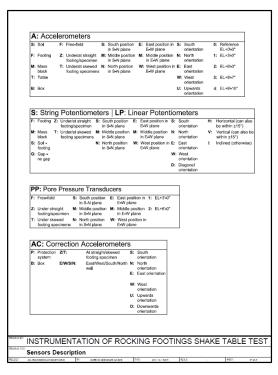
- Selected Method for Measuring In-situ Relative Density (D_R)
 - Sand Cone Test
 - ✓ Logistics and time constraint issues for planned CPT pushes
 - ✓ Consistent compaction protocol with previous project yielding $D_R = 88\%$ based on sand cone tests and nuclear density gage measurements

> Sand Cone Test Results

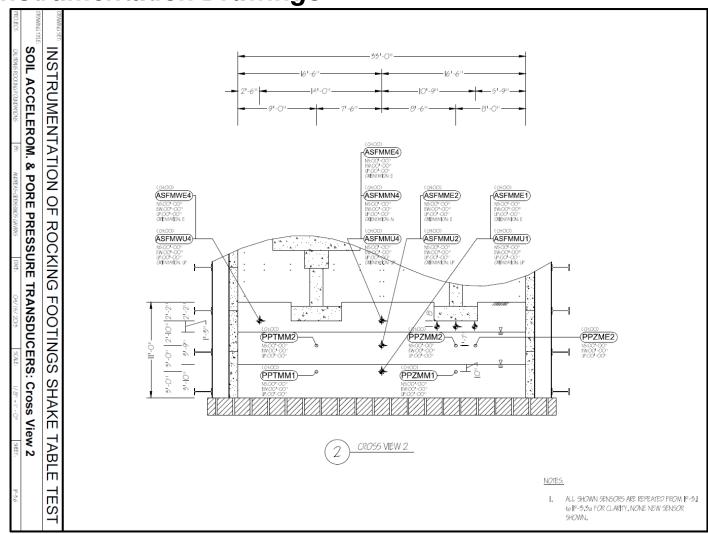

escription Location			Relative density,	Water content,	
	x (m)	y (m)	z (m)	D _R (%)	w (%)
Under skew footing center	-2.29	0.30	0.97	86.9	5.1
Under aligned footing center	2.59	0.30	0.97	72.8	4.4
Under skew footing center	-2.29	0.30	1.83	105.7	5.2
Under aligned footing center	2.59	0.30	1.83	95.3	5.7
Under skew footing center	-2.29	0.30	2.49	91.3	3.8
Under aligned footing center	2.59	0.30	2.49	78.4	4.5
Under skew footing center	-2.29	0.00	2.69	68.1	4.9
Under aligned footing center	2.59	0.00	2.69	83.0	4.9
Skew footing backfill before test 1, SE side middle	-1.79	-0.86	3.35	88.6	4.4
Aligned footing backfill before test 1, SE corner	3.58	-0.99	3.35	69.5	3.4
Aligned footing backfill before test 1, S side middle	2.59	-0.99	3.35	95.7	3.2
Skew footing center before test 3	-2.29	0.00	2.69	64.5	5.5
Aligned footing center before test 3	2.59	0.00	2.69	86.9	5.8

Interpreted achieved average relative density, $D_R \approx 90\%$

General Considerations


- Must consider available facility instrumentation in advance, and the need to purchase/fabricate sensors specific to your test
 - ✓ Pore Pressure Transducers (PPT) to monitor pore pressure build-up in saturated soil
 - ✓ Custom-made gap sensors to monitor dynamic evolution of the soil surface under the footings
- Clear instrumentation drawings and list of sensors distributed to data acquisition and video personnel before start of construction
- Understand construction and instrumentation placement time constraints coordinate with data acquisition personnel
 - ✓ What instrumentation is essential to my test?
 - No strain gage installation for the columns
 - ✓ What is reasonable instrumentation redundancy?
 - Installed sensors = 137; initially proposed = 221

> Sensors Summary


Sensor	Location	No.	Notes
Accelerometers	Table	3	
	Box	4 (8)	
	Soil, free-field	10	
	Soil, under footings	8 + 9	
	Footings	7 + 8	
	Protection system	(1+2)	
	Mass blocks	8 + 8	
	<u>Total</u>	<u>76</u>	
String	Mass blocks	6 + 6	(4) 10in, (6) 25in, (2) 50in
Potentiometers	Footings	6 + 6	(5) 5in, (7) 20in
	Soil settlement	4 + 5	(9) 5in
	<u>Total</u>	<u>33</u>	(14) 5in, (4) 10in, (7) 20in, (6) 25in, (2) 50in
Linear	Gap/no gap	10 + 10	(20) 50mm
Potentiometers	Total	<u>20</u>	(20) 50mm
Pore Pressure	Soil, free-field	4	
Transducers	Soil, under footings	2 + 2	
	Total	<u>8</u>	
Total No. of Sensors	<u> </u>	137	

> Sensors Nomenclature

S:	Soil	F:	Free-field	S:	South position in S-N plane	E:	East position in E-W plane	S:	South orientation	0:	Reference EL+0'-0"
F:	Footing	Z:	Under/at straight footing/specimen	M:	Middle position in S-N plane	M:	Middle position in E-W plane	N:	North orientation	1:	EL+3'-0"
M:	Mass block	T:	Under/at skewed footing specimens		North position in S-N plane	W:	West position in E-W plane	E:	East orientation	2:	EL+6'-0"
T:	Table							W:	West orientation	3:	EL+8'-7"
B:	Box							U:	Upwards orientation	4:	EL+8'-10"

Soil Instrumentation Drawings

Soil Accelerometers Placement

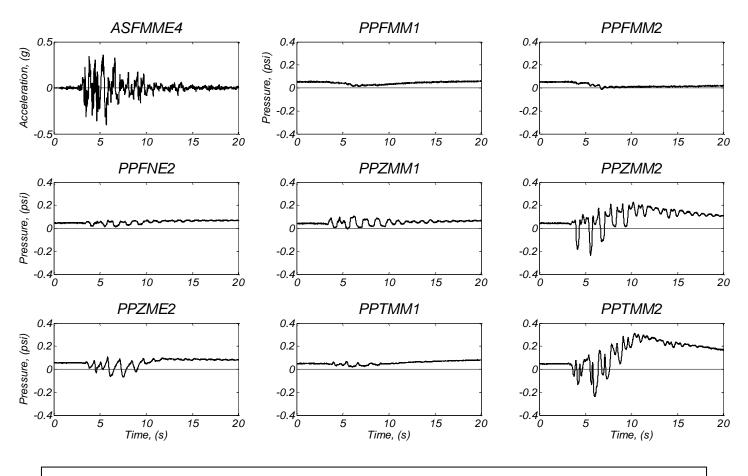
Marking of locations before placement

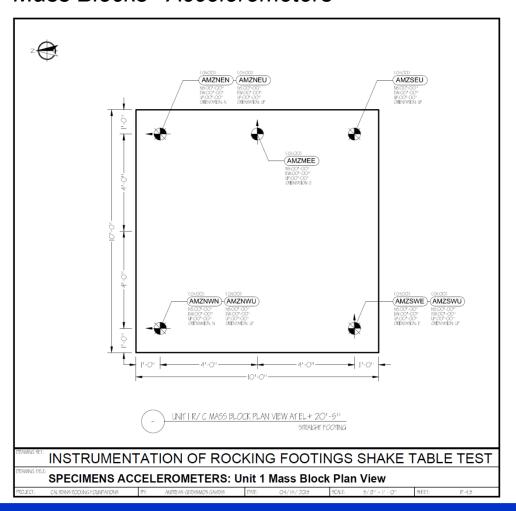
Placement of accelerometers

Covering with soil and cables running

Pore Pressure Transducers (PPT) Placement

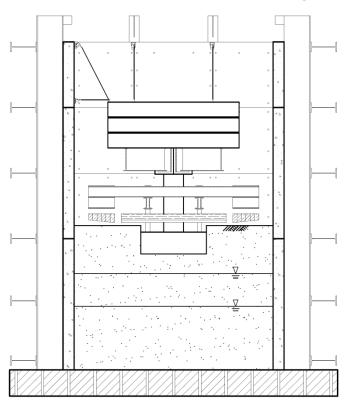
 Challenging to prevent desaturation of sensors during the 2-3 weeks period for which they remained above water table

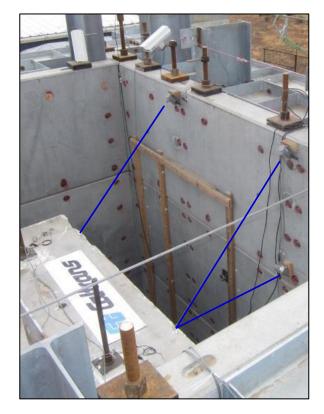



Soil Pore Pressure Response

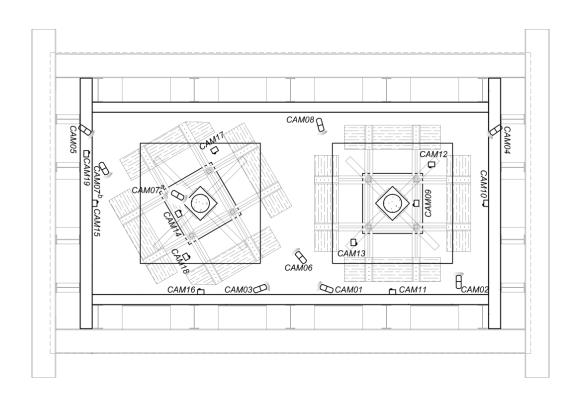
Sensor de-saturation or incomplete soil saturation?

Structures' Instrumentation


Mass Blocks' Accelerometers



- Structures' Instrumentation
 - Mass Blocks' String Potentiometers
 - ✓ 6 linearly independent String Pots (3 horizontal + 3 vertical) to determine 6 DoFs



Video Cameras Used

- Coaxial cameras [8]
 - ✓ Wired, power-supported, low resolution (768 × 494 pixels at 30 fps).
 - ✓ Live video streaming; can be played back during testing
 - √ 168 out of 168 events successfully recorded
- GoPro2 cameras [11]
 - ✓ Wireless, battery-supported, high resolution (1920 × 1080 pixels at 30 fps)
 - ✓ Can be accessed and played back after testing.
 - √ 126 out of 231 events successfully recorded
- Sony cameras [2]
 - ✓ Man-operated, battery-supported, high resolution (1920 × 1080 pixels at 30 fps)
 - ✓ Can be accessed and played back after testing
 - √ 29 out of 42 events successfully recorded

Video Cameras Layout

Coaxial Cameras Views

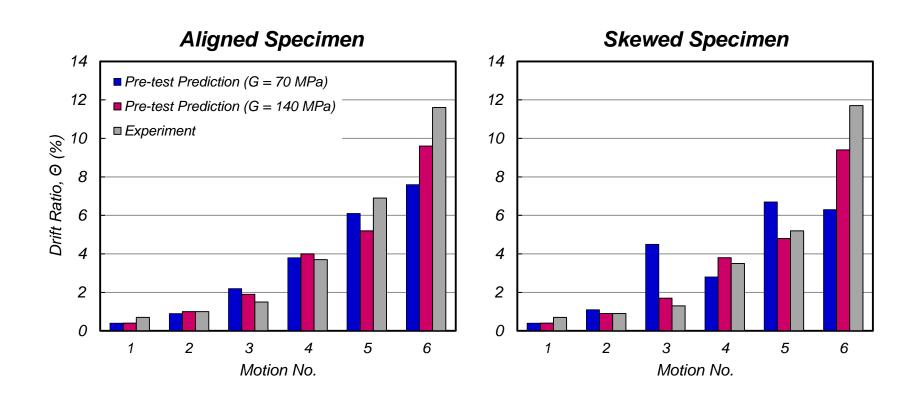

Developing a Motion Protocol

- Selection of number of motions and target drift ratios (Θ) for each motion
 - ✓ Test days 1 and 2: 6 motions of increasing intensity (peak Θ < 13% to avoid mobilization of the restraining system and damage to the column)
 - ✓ Test day 3: additional 2-3 motions
- Pre-test prediction required to guide selection of motions to match objectives
- Comparison of predicted and achieved response after each motion

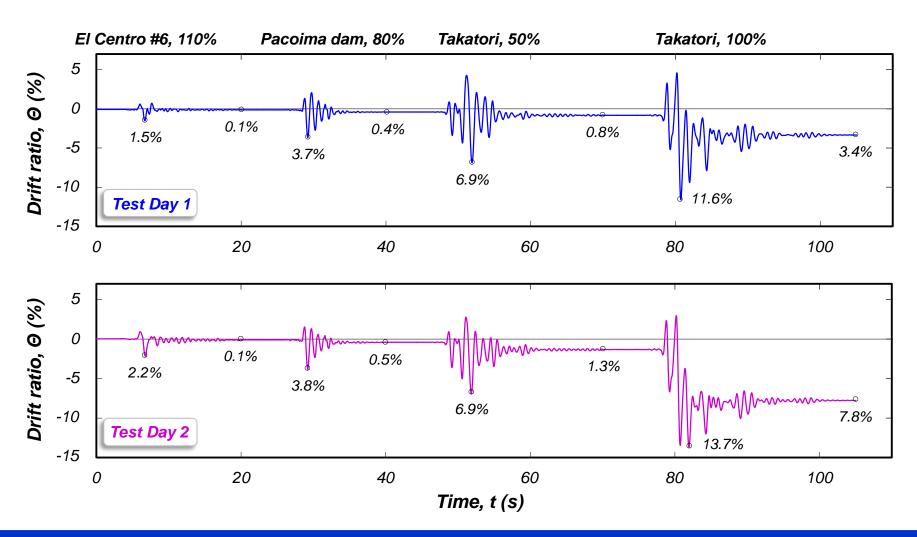
Additional Considerations

- Candidate motions need to be selected and distributed to Operations
 Manager before filling the box with soil to run OLI tests
 - ✓ Candidate motions: 9 unique records; 15 in total
 - ✓ Used motions: 6 unique records; 9 in total
- Peak input acceleration < 0.80 g to ensure LSCB integrity due to removal of the roof framing elements

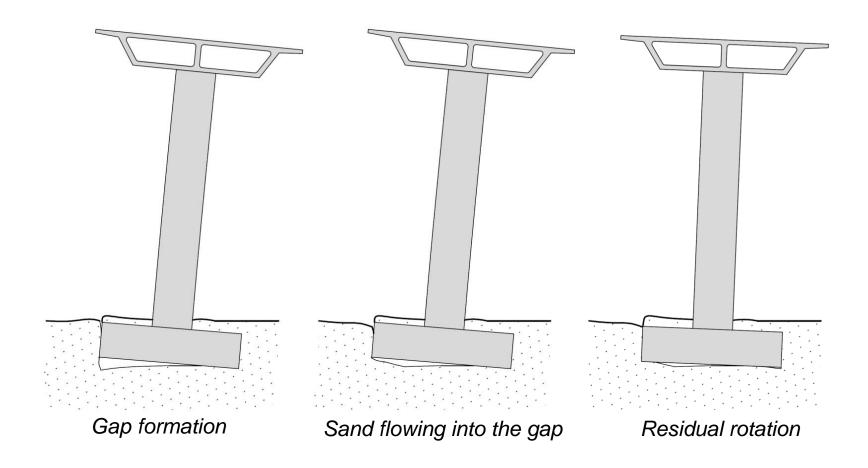
> 3D Model in OpenSees for Motion Selection


Motion Protocol

No.	Earthquake	Ground motion	Scale Factor	Target Drift Ratio, Θ (%)	PGA, (g)
1	1989 Loma Prieta, CA	Gilroy #1	1.0	< 0.5	0.47
2	1989 Loma Prieta, CA	Corralitos	0.8	1	0.39
3	Imperial Valley, CA, 1979	El Centro #6	1.1	2	0.49
4	1971 San Fernando, CA	Pacoima Dam	0.8	4	0.52
5	1995 Kobe, Japan	Takatori	0.5	6	0.34
6	1995 Kobe, Japan	Takatori	1.0	>8	0.68
7	1987 Superstition Hills (B)	Parachute Test Site	1.0	>8	0.42
8	1987 Superstition Hills (B)	Parachute Test Site	-1.0	>8	0.42
9	1987 Superstition Hills (B)	Parachute Test Site	1.1	>8	0.46

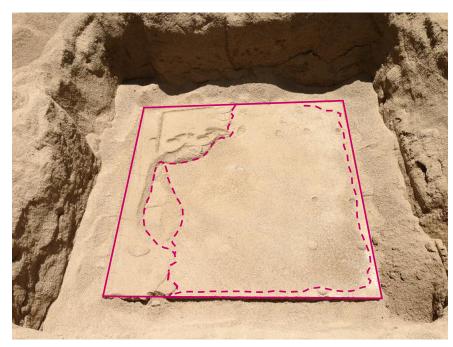

<u>Notes</u>

- (1) Motions 7 9 only for Test 3.
- (2) White noise with 0.05g RMS amplitude and 5 mins duration applied before motion 1 and after each motion.
- (3) Motions compressed in time by sqrt(1/3) = 0.577.


Comparison of Pre-test Prediction with Test Day 1 Results

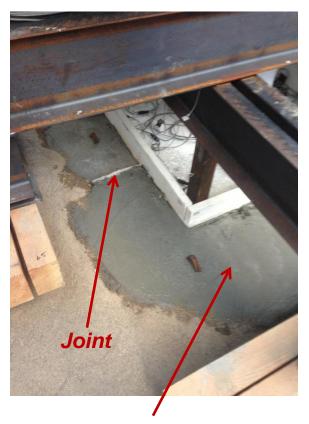
Column Drift Ratio Time Histories for Test Days 1 and 2

Mechanism for Flow of Sand under the Footing

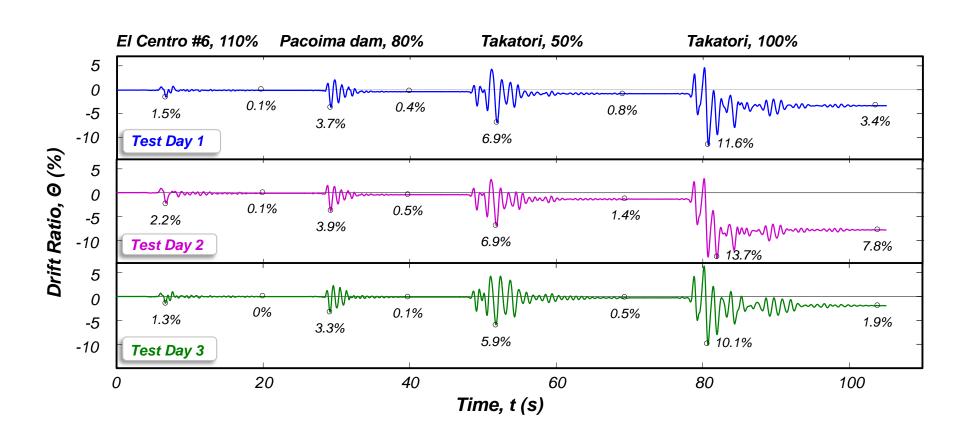


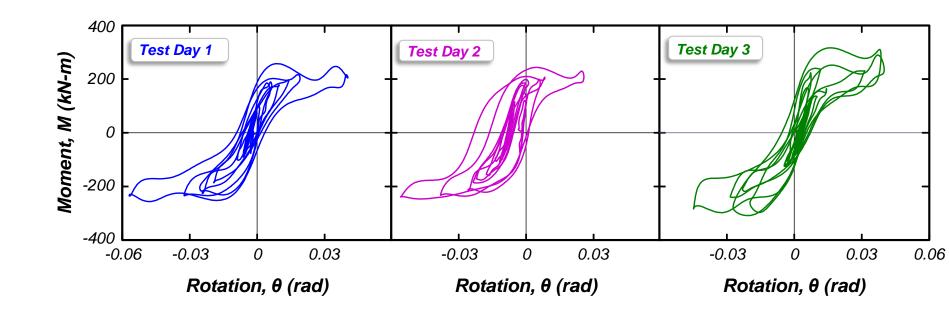
Post-test Soil Surface under Footings

Test Day 1

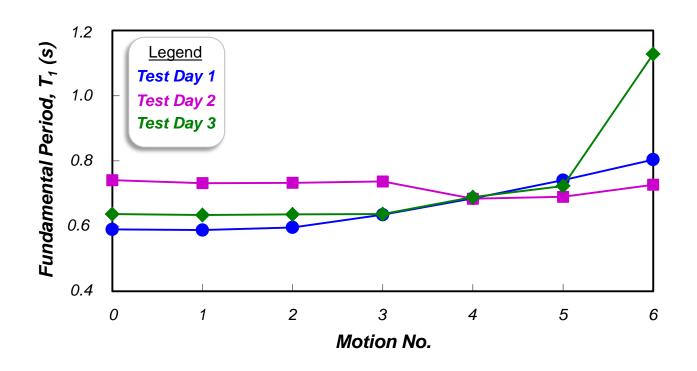


Test Day 2


- Remediation Method for Test Day 3
 - Weak Concrete Cast around the Footings



Concrete, $f_c' \approx 3.5$ MPa [0.5 ksi] (cast one day before the test)


Column Drift Ratio Time Histories (revisited)

Foundation Hysteretic Response – Takatori, 50%

- System Softening and Period Elongation
 - Determined from white-noise vibrations based on the ARS amplification ratio

Cost Disaggregation

Item	Cost	Percentage (%)
Liner, Saturation and Dewatering System	\$2,619	0.7
Pore Pressure Transducers	\$1,719	0.5
Analysis of Soil Box	\$5,737	1.6
Specimens Construction	\$10,502	2.9
Restraining System	\$18,000	4.9
Mass Blocks Shipment	\$7,800	2.1
Box Demolition	\$51,000	13.9
Facility Use	\$101,000	27.5
Facility Labor	\$98,858	26.9
Equipment Renting	\$41,539	11.3
Other Materials	\$28,285	7.7
Total Experimental Cost	\$367,059	100.0

Concluding Remarks

- This presentation focused on some of the design, construction and testing aspects of a large-scale 1g testing of a geo-structural system at UCSD
- Detailed documentation of protocols and detailed preparation of designs increases quality of communication and coordination amongst the various processes
- Testing decisions should reflect the target of measuring and gaining insights into specified targeted responses and mechanisms
- The efficacy of a physical modeling test of this scale reflects the details of the preparation and execution phases

Concluding Remarks

- The test progress is not a straight line. Adjustments should be expected subject to:
 - Preliminary results during the design phase
 - Gained insights during testing
 - Time- and cost-limitations

Acknowledgements

- Project funded by California Department of Transportation
- Principal investigators
 - Marios Panagiotou (formerly UCB)
 - Bruce Kutter (UCD)
 - Patrick J. Fox (formerly UCSD)
 - Jose I. Restrepo (UCSD)
- Student researchers
 - Grigorios Antonellis (formerly UCB)
 - Gabriele Guerrini (formerly UCSD)
 - Andrew Sander (UCSD)
- Technical staff at NEES @ UC San Diego
 - Dan Radulescu
 - Paul Greco
 - Alex Sherman
 - Hector Vicencio
 - Raymond Hughey
 - Robert Beckley
 - Lawton Rodriguez

