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Overview

• Outstanding Questions in Soil Liquefaction
• Laboratory vs. Field Behaviors

• System Response of Interlayered Soil Deposits

• Partial Drainage and Multidirectional Loading

• Liquefaction of Gravelly Soils

• Combined Loading on Deep Foundations (SSI 
Knowledge Gap)

• Torsional response of deep foundations

• Combined loading: torsional, lateral (axial?)
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Outstanding Questions in  Soil 
Liquefaction
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Example behaviors @ Ng = 3% and Nmax

Laboratory vs. Field Response 
Linking Hysteretic Behavior to Liquefaction                                     
Susceptibility
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ru,max 

(%) Gtan,min/tcyc,max Dtcyc/tcyc,max 

Ng=3% Nmax Ng=3% Nmax Ng=3% Nmax Ng=3% Nmax 
F-2-6 Interm. Sand 93 99 10.12 0.00 0.60 0.47 
E-3-2 Clay Clay 8 79 20.41 1.26 0.76 1.00 

A-BL-3 Clay Sand 79 100 12.01 0.04 0.85 0.71 
A-BL-5 Clay Sand 62 96 9.74 1.93 1.03 0.74 
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F-2-6, PI = 0, OCR = 2.4
ru,max = 99%

Ng = 3%: Intermediate Behavior
Nmax:   Sand-Like Behavior

Ng = 3%

Nmax
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Ng = 3%: Clay-Like Behavior
Nmax:   Clay-Like Behavior
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Stuedlein et al. (2023a)
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Ng = 3%: Clay-Like Behavior
Nmax:   Sand-Like Behavior



Field Response?

• Specimens derived from the OSU Blast Array at Port 
of Longview, WA (Jana et al. 2023a)
• Instrument array facilitates computation of stresses and strains with 

linkage to excess pore pressure generation

• Loaded using “T-Rex” (NHERI@UTEXAS),                                      
gmax ≈ 0.15%

• Loaded using controlled blasting,                                                             
gmax ≈ 1.15%

• Goal: link laboratory                                                               
and field responses

(d)

Laboratory vs. Field Response 
Observed Field Behavior

Jana et al. (2023)

5 Armin W. Stuedlein © 2023



-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-15 -10 -5 0 5 10 15

N
o

rm
a

li
ze

d
 C

y
c

li
c

 S
h

e
a

r 
S

tr
e

s
s

, 

Shear Strain, g (%)

N
o

rm
a

li
ze

d
 C

y
c

lic
 S

h
ea

r 
S

tr
e

s
s

, 
t c

yc
/t

c
yc

,m
ax

A-BL-3, PI = 11, OCR = 4.2
ru,max = 100%

(e)

Ng = 3%: Clay-Like Behavior
Nmax:   Sand-Like Behavior
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• In-situ variation in residual excess pore pressure with 
shear strain; response similar to silty sand deposit @ 
Wildlife Site

• Large-strain “sand-like” cyclic behavior in CDSS 
linked to smaller strain liquefaction tendency

• Evidence suggests that:
• Liquefaction of these transitional, low plasticity silts                               

in the field is likely if loaded sufficiently
• Ultimate hysteretic behavior (g > 5%) in CDSS is                            

necessary to reveal the liquefaction potential (susceptibility)
• Liquefaction in the field may occur at smaller strains                                

than that implied by stress-controlled CDSS tests 

• LHPOST6 + laminar container may be used           
to prepare identical specimens (lab &               
container) to interrogate mis-match                  
between laboratory and field

Jana et al. (2023)

Laboratory vs. Field Response 
Observed Field Behavior
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Partial Drainage & Multi-directional Shaking
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• Full-scale, in-situ dynamic testing has 
demonstrated the viability of our 
instrumentation techniques
–Velocity transducers placed to form “nodes” 

of a physical “finite” element 

–Piezometers placed at mid-points of 
elements to measure pore pressure

• Shear waves generated through 
detonation of explosives

• Shear strains through differentiation of 
displacement time histories

• Shear stresses through velocity time 
histories & Vs

• Shear modulus & damping

Instrumentation Techniques
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Field Experiments
Controlled Blasting @ Depth of ~25 m
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Key Observations (TBP & DBP)

Shear Strain vs. Excess Pore Pressure

• Maximum excess pore pressure, ru,max, 
occurs at smaller gmax than implied by 
EPWP model for sands (C&B 2012)

• Drainage towards end of DBP inhibits 
larger ru,max

• Strain-controlled CDSS data confirm g-ru

relationship at v. small & large strains, 
until drainage initiates
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Key Observations (TBP & DBP)
Shear Modulus Reduction with Shear Strain

TGP 10 TGP 13
PPT 6
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• Baseline Vs established through downhole 
and cross-hole (blast) tests (TBP), and 
downhole (DBP)

• Shear wave velocity calculated for each          
charge as the waveform passes through 
the array

• Vs is matched with its corresponding shear 
strain

• Shear modulus deduced: 𝒎𝒂𝒙 𝒔
𝟐

• Initial loss of stiffness consistent with previously-
reported laboratory data

• Effects of multi-directional loading?

• Large strain response indicative of field drainage

(Jana & Stuedlein (2021)
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Outstanding Questions in Soil 
Liquefaction
• In-situ cyclic resistance > case history-based 

triggering estimates (upper right figure)

• Effects of drainage has been documented; partial 
drainage increases resistance (lower right figure)

• What are the effects of multidirectional shaking?
– Blast-induced S-waves produce 2D or 3D shaking

– Effect on cyclic resistance mixed – needs further study

• Blasting  3D excess pore pressure field (?)

• Does partial drainage occur in the field?
– Possible for long-duration (CSZ) earthquakes

– Need to confirm effects on shear modulus, amplification

• Propose construction of bidirectional laminar 
box to fully leverage LHPOST6 capabilities
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Liquefaction of Gravels
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Liquefaction of Gravels
Concerns

• The coupled fluid-mechanical seismic response 
of natural, native gravelly soils in-situ has never 
been observed in a controlled experimental 
setting

• Penetrometer-based estimates of cyclic 
resistance

• DPT – small penetrometer relative to some gravel sizes

• BPT or iBPT: relies on correlations to SPT (?), not 
widely-available, $$$

• Uncertainties with Vs-based methods
• New case history-based Vs liquefaction model available 

– great..!

• But what about those gravels that liquefied without 
surface manifestation? Epistemic uncertainty in model? 

Rollins et al. (2022)

Armin W. Stuedlein © 202314



• Epistemic uncertainty  reducible uncertainty

• Penetration resistance can account for effects of gradation through blow 
count, but subject to partial drainage when fine sand, silts, and clays 
comprise the matrix between large particles

• Gradation is key:
• Poorly-graded gravels drain fast, but exhibit large void ratios and have lower Vs

as a result; when capped, drainage is prohibited

• Well-graded gravels cannot drain fast, but exhibit small void ratios, have larger Vs, 
and larger cyclic resistance as a result

• Demonstration via the cyclic strain approach

Liquefaction of Gravels
Concerns, Variables, Hypothesis

Armin W. Stuedlein © 202315



• Proposed in discussion to Rollins et al. (2022)

• Set CRR from Vs-based triggering model 
equal to that expected from shear modulus 
degradation  probabilistic shear strain to 
trigger liquefaction, gcl (PL)

• Allows coefficient of uniformity, Cu to be 
included in liquefaction triggering analyses

𝑪𝑹𝑹 = 𝐞𝐱𝐩 (
𝟑.𝟖𝟖∗𝟏𝟎ష𝟕∗𝑽𝒔𝟏

𝟑 ି𝟏.𝟔∗𝑴𝒘 ି𝐥𝐧 (
𝟏ష𝑷𝑳

𝑷𝑳
)

𝟒.𝟗𝟓
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=

𝟏

𝟏 +
𝜸𝒄𝒍
𝜸𝒓

𝟎.𝟖𝟒

Rollins et al. (2020)

Rollins et al. (2022)

Liquefaction of Gravels
Cyclic Strain Approach
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𝜸𝒄𝒍 = 𝐞𝐱𝐩 (
𝟑. 𝟖𝟖 ∗ 𝟏𝟎ି𝟕𝑽𝒔𝟏

𝟑 − 𝟏. 𝟔𝑴𝒘 − 𝐥𝐧 (
𝟏 − 𝑷𝑳

𝑷𝑳
)

𝟒. 𝟗𝟓
)[

𝝈′𝒗𝟎

𝟎. 𝟏 ∗ 𝝆 ∗ 𝑽𝒔𝟏
𝟐

𝟏 + {
𝜸𝒄𝒍

𝟎. 𝟎𝟎𝟒𝟔 𝑪𝒖
ି𝟎.𝟏𝟗𝟕 𝝈ᇱ

𝟎
𝟎.𝟓𝟐}𝟎.𝟖𝟒

]
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Liquefaction of Gravels
Proposed Cyclic Strain Approach (Jana & Stuedlein 2023)
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• Deterministic gmax can be computed directly 

• We determined Cu and gmax for 70 of 174 case histories

• For all liquefaction (“Yes”) cases, except 3, gmax > gcl

• For all “No” cases, except 5, gmax < gcl (effect of capping layer?)

• gmax for 1964 Anchorage EQ very large for lateral spreading and flow 
slide case histories (sometimes exceeding 1,000%)

• We can measure gmax in-situ or in a laminar container

• Thus, we can directly test our cyclic strain-based approach

Liquefaction of Gravels
Proposed Cyclic Strain Approach (Jana & Stuedlein 2023)
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Combined Loading on                                         
Deep Foundations
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Combined Loading on 
Deep Foundations
• Axial-lateral-torsional loadings

• Sources of combined loadings:
–Mast arm signal- and signage poles (gravity, wind)

–Near and offshore structures (berthing/mooring 
loadings)

–Skewed bridges (seismic)

–Asymmetric buildings (wind, seismic)

• These loadings can be extreme and are uncertain

• Resistance..? ODOT-funded study shed some light 
on this topic

20 Armin W. Stuedlein © 2023
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Quasi-Static Torsional Loading
Applied Rotation at Head vs. Developed Torque



Quasi-Static Torsional Loading
Distribution of Shear Strain & Torsional Load Transfer
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•No significant change in 
global torsional response 
with number of cycles

•Initial cyclic stiffness similar 
between both shafts, but 
post-yield stiffness for TDS 
2x larger than for TDSFB 
due to dense sand layer

•Local response shows 
possible softening and/or 
friction fatigue

Quasi-Static Cyclic Torsional Loading
Loading Protocol, Global Response, Unit Shaft Resistances
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Combined Loading (Incidental…)

Recall:
• Radial ground cracks opened 

next to TDSFB during torsional 
loading

• One shaft experienced 
“geotechnical failure”, the other 
did not…

• Differential mobilization of 
resistance under a 
displacement couple requires 
an induced lateral load for 
torsional equilibrium….

• Allows insight into effect of 
combined loading
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Combined Loading
Significant Differences in Lateral Responses

• The initial response of TDS (no ground 
cracking) indicated little impact of 
combined loading

• Not so for TDSFB (with ground 
cracking)

• Torsional shear-induced cracks must 
first close prior to the generation of 
lateral resistance
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• If torsional shear occurs prior to large 
lateral movements, then the lateral 
response will be soft. 

• Consider torsional loading prior to 
near-fault velocity pulse…

For TDSFB:
1.8o - 5.6 kN
13o - 73 kN

Very little rotation required to mobilize ultimate 
torsional resistance…!
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• Typical lateral loading simulation 
(e.g., L-Pile) cannot capture 
effect of combined flexure and 
torsional shear

• In case of TDSFB, the maximum 
bending moment was significantly 
under-predicted as a result

• LHPOST6 + Laminar Box: 
apply controlled torsional, 
and inertial and kinematic 
lateral loading to study 
effects of combined loading, 
develop numerical methods 
for simulation
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Combined Loading
Bending Moment Profiles; Poorly-captured using 1D Methods
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