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* Outstanding Questions in Soil Liquefaction
 Laboratory vs. Field Behaviors
Systom R  Intor] | Seil D ’
 Partial Drainage and Multidirectional Loading
* Liquefaction of Gravelly Soils

« Combined Loading on Deep Foundations (SSI
Knowledge Gap)

* Torsional response of deep foundations
« Combined loading: torsional, lateral (axial?)
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Laboratory vs. Field Response

Linking Hysteretic Behavior to Liquefaction
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Jana et al. (2023)

Laboratory vs. Field Response
Observed Field Behavior

Field Response?

« Specimens derived from the OSU Blast Array at Port
of Longview, WA (Jana et al. 2023a)

* Instrument array facilitates computation of stresses and strains with
linkage to excess pore pressure generation

» Loaded using “T-Rex” (NHERI@QUTEXAS),
Ymax = 0.15%

* Loaded using controlled blasting, .
Ymax = 1.15% e ChmEm T _f
« Goal: link laboratory
and field responses
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Laboratory vs. Field Response
Observed Field Behavior

* In-situ variation in residual excess pore pressure with
shear strain; response similar to silty sand deposit @
Wildlife Site

« Large-strain “sand-like” cyclic behavior in CDSS
linked to smaller strain liquefaction tendency

« Evidence suggests that:

» Liquefaction of these transitional, low plasticity silts G 15
in the field is likely if loaded sufficiently ¢ 0
« Ultimate hysteretic behavior (y> 5%) in CDSS is O
necessary to reveal the liquefaction potential (susceptibility) § 3 0.5 1
» Liquefaction in the field may occur at smaller strains L 8
than that implied by stress-controlled CDSS tests S 3 vs
. i T .0
* LHPOST6 + laminar container may be used &
to prepare identical specimens (lab & S ]
. . . 2
container) to interrogate mis-match ",

s between laboratory and field

Jana et al. (2023)
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Instrumentation Techniques B oraomsiac sy

E5p College of Engineering
* Full-scale, in-situ dynamic testing has East. Wost Distance (m)

(a) 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

demonstrated the viability of our S e s e e e
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» Strain-controlled CDSS data confirm j-r,
relationship at v. small & large strains,
until drainage initiates
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(Jana & Stuedlein (2021)

Key Observations (TBP & DBP) L

Shear Modulus Reduction with Shear Strain

(a)

« Baseline V, established through downhole
and cross-hole (blast) tests (TBP), and
downhole (DBP)

« Shear wave velocity calculated for each

charge as the waveform passes through (©)
the array K
] ] [l [l :
* V. is matched with its corresponding shear ?é
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Q £
. : — 2 )
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Outstanding Questions in Soil
Liquefaction

* In-situ cyclic resistance > case history-based
triggering estimates (upper right figure)

« Effects of drainage has been documented; partial
drainage increases resistance (lower right figure)

« What are the effects of multidirectional shaking?
— Blast-induced S-waves produce 2D or 3D shaking
— Effect on cyclic resistance mixed — needs further study

Blasting - 3D excess pore pressure field (?)

Does partial drainage occur in the field?
— Possible for long-duration (CSZ) earthquakes
— Need to confirm effects on shear modulus, amplification

Propose construction of bidirectional laminar
box to fully leverage LHPOST®6 capabilities
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Liquefaction of Gravels
Concerns

» The coupled fluid-mechanical seismic response
of natural, native gravelly soils in-situ has never
been observed in a controlled experimental

setting
» Penetrometer-based estimates of cyclic
resistance
 DPT — small penetrometer relative to some gravel sizes
* BPT or iBPT: relies on correlations to SPT (?), not
widely-available, $$$
» Uncertainties with V -based methods

* New case history-based V, liquefaction model available
— great..!

« But what about those gravels that liquefied without
surface manifestation? Epistemic uncertainty in model?

CSRy1=7.5, CRRy 175

14
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Liquefaction of Gravels
Concerns, Variables, Hypothesis

» Epistemic uncertainty - reducible uncertainty

» Penetration resistance can account for effects of gradation through blow
count, but subject to partial drainage when fine sand, silts, and clays
comprise the matrix between large particles

» Gradation is key:

» Poorly-graded gravels drain fast, but exhibit large void ratios and have lower V,
as a result; when capped, drainage is prohibited

« Well-graded gravels cannot drain fast, but exhibit small void ratios, have larger V,,
and larger cyclic resistance as a result

« Demonstration via the cyclic strain approach

15



Liquefaction of Gravels
Cyclic Strain Approach

* Proposed in discussion to Rollins et al. (2022)

» Set CRR from V-based triggering model
equal to that expected from shear modulus
degradation = probabilistic shear strain to

trigger liquefaction, y,(P,)

* Allows coefficient of uniformity, C, to be
included in liquefaction triggering analyses

1-P;

3_88*10_7*V31—1.6*MW —ln(P—) G 1
_ s L c _
CRR = exp( o5 ) G Y op\08
Vr
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Liquefaction of Gravels
Proposed Cyclic Strain Approach (Jana & Stuedlein 2023)
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Liquefaction of Gravels
Proposed Cyclic Strain Approach (Jana & Stuedlein 2023)

* Deterministic .., can be computed directly

* We determined C, and y,.., for 70 of 174 case histories

* For all liquefaction (“Yes”) cases, except 3, 7., > %

* For all “No” cases, except 5, .., < 7. (effect of capping layer?)

* 7.ax TOr 1964 Anchorage EQ very large for lateral spreading and flow
slide case histories (sometimes exceeding 1,000%)

 We can measure y,,, in-situ or in a laminar container
* Thus, we can directly test our cyclic strain-based approach

18
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Combined Loading on
Deep Foundations

 Axial-lateral-torsional loadings

» Sources of combined loadings:
—Mast arm signal- and signage poles (gravity, wind)
—Near and offshore structures (berthing/mooring
loadings)
— Skewed bridges (seismic)
—Asymmetric buildings (wind, seismic)
* These loadings can be extreme and are uncertain WA
» Resistance..? ODOT-funded study shed some light Bt
on this topic

20



Instrumented, Full-scale Specimens

Northeast, A’
stance (m)
11 12

Y viin.

Y ATD
Y Test

1 Max.

@ 152.5 mm

~ S

. . e Ty
Armin W. Stuedlein © 2023

 Limits (%)

21



Quasi-Static Torsional Loading

Applied Rotation at Head vs. Developed Torque
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TDSFB

o~ Take-away:

Torsional
resistance is a
“small” rotation
(displacement)
phenomenon
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Quasi-Static Torsional Loading

Distribution of Shear Strain & Torsional Load Transfer

Depth (m)

Diameter, D (m) Diameter, D (m)
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Quasi-Static Cyclic Torsional Loading

Loading Protocol, Global Response, Unit Shaft Resistances

Time (Seconds)
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1 TDS

global torsional response
with number of cycles

«Initial cyclic stiffness similar
between both shafts, but
post-yield stiffness for TDS
2x larger than for TDSFB
due to dense sand layer

*Local response shows
possible softening and/or
friction fatigue
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Recall:

Combined Loading (/Incidental...)

250 + .'...ooooooooooo I
- Radial ground cracks opened : °* —— oertilieestieg) L
. : i —O0— TDS: Measured -

next.to TDSFB during torsional 200 - e e TDS: Extrapolated 1 150
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» One shaft experienced £ 150 [
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did not... &~ '

. : e o 100 -

« Differential mobilization of = _
resistance under a S 50 T 950
displacement couple requires [
an induced lateral load for -
torsional equilibrium.... U L e e e

C : 0.0 0.5 1.0 1.5 2.0

* Allows insight into effect of

combined loading

Rotatioh, 6 (deg)

Torque, T (Kip-ft)



Combined Loading

Significant Differences in Lateral Responses

250 —+ ....oooooooo-oooo |
* The initial response of TDS (no ground 1 o —t— IBEFI;B/‘: Measm;red _
' R E : : i o’ —0— : Measure
crackllng) mdmgted little impact of 200 1 e+ TDS: Extrapolated +
combined loading _ s ._._._.-.-0-0-0.-0-0-0-0-0 I
- Not so for TDSFB (with ground g 150 1Y ¥
cracking) E ] T
» Torsional shear-induced cracks must ¢ 100 -
first close prior to the generation of g 1
lateral resistance F 50
- If torsional shear occurs prior to large : (b) |
lateral movgments, then the lateral 0.0 0.5 i 1 i
response will be soft. Rotation, 6 (deg)
« Consider torsional loading prior to Very little rotation required to mobilize ultimate

. i i /
near-fault velocity pulse... torsional resistance. ...



Combined Loading

Bending Moment Profiles; Poorly-captured using 1D Methods

27

« Typical lateral loading simulation
(e.g., L-Pile) cannot capture
effect of combined flexure and

torsional shear

* In case of TDSFB, the maximum
bending moment was significantly
under-predicted as a result

« LHPOSTG6 + Laminar Box:
apply controlled torsional,
and inertial and kinematic
lateral loading to study
effects of combined loading,
develop numerical methods

for simulation

Depth (m)

Bending Moment (kN-m)
100 200

Oregon State University

o
College of Engineering
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