

National Science Foundation

UC San Diego JACOBS SCHOOL OF ENGINEERING Structural Engineering

Recent experimental and analytical studies on the seismic performance of Ceiling, Piping, and Partition systems at UNR

Manos Maragakis

Dean, College of Engineering | Professor, Civil and Environmental Engineering

University of Nevada, Reno

Joint Researcher Workshop UC San Diego, Lehigh & SimCenter

December 16-17, 2019 University of California, San Diego

SIMCENTER COMPUTATIONAL MODELING AND SIMULATION CENTER

University of California at San Diego

Natural Hazards Engineering Research Infrastructure

Research Contributors

Siavash Soroushian, PhD

Esmaeel Rahmanishamsi, PhD

Craig Jenkins, MS

Host Institution Fun

Funded b

Presentation Outline

GC Nonstructural Project: An integrated Multi-Institutional Effort

- Introduction
- NEES Nonstructural Grand Challenge Project
- Experimental Studies (GC Projects)
- Experimentally Integrated Simulation Studies
- Future Directions

Definition of Nonstructural Components

Elements of a building that are NOT part of its gravity and/or seismic loading resisting system.

Host Institution

Why are Nonstructural Elements Important?

Nonstructural components account for 75-85% of total investment inside a structure

Nonstructural damage accounts for over 79% of the total earthquake damage

- Subject to the dynamic environment of the building
- Damage can be triggered at response intensities smaller than those required to produce structural damage

Ceiling-Piping-Partition Systems

The system is a set of three physically interacting subsystems

Ceiling Subsystem

Piping Subsystem

Partition Subsystem

Host Institution

Fire Sprinkler Piping Systems

Cold-Formed Steel-Framed Gypsum Partition Walls

Acoustic Tile Suspended Ceiling System

NEES Nonstructural Simulation of the Seismic Performance of Nonstructural Systems

Damage During Past Earthquakes - Piping

Simulation of the Seismic Performance of Nonstructural Systems

onstructural

Damage During Past Earthquakes - Partition

2010 Chile Earthquake

Damage During Past Earthquakes - Ceiling

Outline

Introduction

• NEES Nonstructural Grand Challenge Project

- Experimental Studies (GC Projects)
- Analytical Studies
- Future Directions

Funded b

Host Institution

NEESR-GC: Project Team

Principal Investigator

E. "Manos" Maragakis University of Nevada, Reno

Co- Principal Investigators

André Filiatrault (UB) **Steven French** (Georgia Tech) Tara Hutchinson (UCSD) **Bob Reitherman** (CUREE)

Advisory Board

Robert Bachman(RE Bachman Structural Engineers) William Petak(USC) Stephen J. Eder P. E. (FRC) Shannon Rose (ISAT) **Richard Kirchner** (HPSA) Chris Tokas (OSHPD) Eduardo Miranda (Stanford)

International Collaborators

Jean-Angelo Beraldin (NRC, Canada) Kazuhiko Kasai (Tokyo Institute of Techn) Shojiro Motoyui (Tokyo Institute of Techn)

Industry Collaborators

Jim Hatch (Jarret Structures) **Paul Hough** (Armstrong World Industries) **Doug Taylor** (Taylor Devices)

Practice Committee

Bill Holmes (R&C) **Dennis Alvarez** (CISCA) **Russell Fleming** (NFSA) John Gillengerten (OSHPD) Ali Hosam (FM Global) Robert Wessel (Gypsum. Assoc.)

Senior Personnel

Raymond Burby (UNC at Chapel Hill) Jaque Ewing-Taylor (UNR) Mircea Grigoriu (Cornell) Abhinav Gupta (NC State) Sameer Hamoush (NC A&T State Univ.) **Gee Hecksher** (Architectural Resources) Ahmad Itani (UNR) Falko Kuester (UCSD) Gokhan Pekcan (UNR) Andrei Reinhorn (UB) Gilberto Mosqueda(UCSD) Arash E. Zaghi (UCONN)

Other Collaborators

Kurt McMullin (San Jose State Univ.) Wayne Smith (Tech Museum) Dave Schaefer (NCSU)

N		CUBEE	Georgia Tech
		falo	RUTHERFORD & CHE
			North Carolina A&T State University

To significantly enhance the seismic resilience of <u>buildings</u> and <u>communities</u> by providing practicing engineers and architects with verified tools and guidelines for the understanding, prediction and improvement of the <u>seismic response of the ceilingpiping-partition nonstructural system</u>.

RI

Host Institution

Enhancement of Resilience

Outline

Introduction

- NEES Nonstructural Grand Challenge Project
- Experimental Studies (GC Projects)
- Analytical Studies
 - **Previous Studies** **
 - **Experimentally Integrated Studies** *
- Future Directions

Funded

Component Level Experiments at UB NEES site

50 12-ft Wall Specimens

48 Pipe T-Joint Specimens 4 Piping Subsystems

10 Ceiling Specimens

Experimental Program- System Level

Combination of Ceiling-Piping-Partition

E-Defense Experiment

Two Floors of Nonstructural Systems

> 43 Earthquake Simulations

UNR Experiment

Two Floors of Nonstructural Systems

8 Sets of Experiments

E-Defense Experiment

MAN

- Shake table tests of a full-scale 5story steel moment frame building
 - Isolated with triple friction pendulum isolators
 - Isolated with lead rubber bearing/cross linear slider
 - **Fixed base**
 - Simulations designed to impose large displacement demands in isolation systems (comparable motions could not be applied to fixed-base buildings for safety reasons)
 - Simulations both with and without vertical component of ground motion

E-Defense Experiment – Ceiling Performance

Host Institution Funded by

Test-bed Structure: Overview

Steel Braced-Frame Structure

- Full-Scale
- Two-by-one bay

Approx. Dimensions

- 7.5m x 3.5m x 18.3m
- (24.5ft x 11.5ft x 60.0ft)

Configuration Variables

- Brace properties
- Addition attached floor mass

Test-bed Structure: Configurations

Two Configurations

- Linear: Large Accelerations
- Nonlinear: Large Inter-story Drift

	Linear Configuration		Nonlinear Configuration	
Floor	BRB Yield	Attached Mass	BRB Yield	Attached Mass
	Capacity	Auacheu Mass	Capacity	Attached Mass
First	283 kN (64Kips)	30.7 kN (6.9Kips)	89 kN (20.0Kips)	62.5 kN (14.0Kips)
Second		17.6 kN (4.0Kips)		279.1 kN (62.8Kips)
T _n	0.2 sec		0.34 sec	

Test-bed Structure: Floor Layout

Host Institution

UNR Experiments

Linear Tests:

- ✓ Braces Remained Linearly Elastic
- Objective: Achieve High Floor Acceleration
- ✓ 5 linear tests \rightarrow 42 Motions \rightarrow PGA= 0.12-1.17g

Nonlinear Tests

- ✓ Braces with Lower Yield Force
- ✓ Braces Yielded
- Objective: Achieve Large Story Drift
- ✓ 3 Nonlinear tests \rightarrow 17 Motions \rightarrow PGA= 0.24-2.04g

Funded |

UNR Experiment-Test Video

> Nonlinear Test

Host Institution Fun

UNR Experiment – Ceiling Performance

Experimental Fragility Analysis: Ceiling Performance

NEES Nonstructural

Experimental Fragility Analysis: Pipe Joint Rotation

Experimental Fragility Analysis: Partition Walls

Damage State	Definition	Required Repair	
DS1	Minor Damage: Popping out or rocking of gypsum board screws (field and boundary); Cracks forming at corners of openings; Minor gypsum cracking or crushing; Joint paper damage; Sliding of studs in top track.	Tape replacement at corners; gypsum board screw replacement at pop out locations; minor repairs to cracking.	
DS2	Local Damage: Boundary stud deformation (bending, twisting, pulling out from top track); Crushing of gypsum boards; Damage to partial height brace connection.	Boundary stud replacement; replacing partial sections of gypsum board; replacing partial height brace system.	
DS3	Severe Damage: Plastic hinging forming in field studs; tearing in steel track through slab fasteners.	Removal of full gypsum board sections and replacement of field studs; replacement of new full height gypsum wall boards; replacement of top tracks.	

Funded by

Fragility Curve Development Using UB, UNR, and E-Defense

Funded by

Outline

• Introduction

- NEES Nonstructural Grand Challenge Project
- Experimental Studies (GC Projects)
- Analytical Studies
 - Previous Studies
 - Experimentally Integrated Studies
- Future Directions

Funded

Host Institution

Previous Analytical Studies - Piping

NOT Considered in Previous Studies

- Nonlinearity of pipe joints and supporting elements.
- Propagation of damage due to the failure of supporting elements.
- Interaction with suspended ceiling system.

Previous Analytical Studies - Partitions

Limitations of Previous Studies

- > Only lumped spring analytical models (limited to their experimental setups).
- Not able to identify local damage modes.
- Not useful for different design variables (e.g. spacing between studs).

Previous Analytical Studies - Ceiling

NOT Considered in Previous Studies

- Nonlinearity of ceiling joints and supporting elements.
- Propagation of damage due to the failure of ceiling panels and supporting elements.
- Interaction with fire sprinkler piping system.

Yao (2000)

Echevarria et al. (2012)

Outline

Introduction

- NEES Nonstructural Grand Challenge Project
- Experimental Studies (GC Projects)
- Analytical Studies
 - **Previous Studies** **
 - **Experimentally Integrated Studies** *
- Future Directions

Funded

Analytical Model of Partition Walls

Partition Joint Tests at the University of Nevada, Reno

More than 100 Partition Joint Specimens Tested Under Monotonic and Cyclic Loading

Development of an Analytical Model for Partition Joints

The "Pinching4" uniaxial material along with a "TwoNodeLink" element was used to simulate the force-displacement response of the joints (OpenSees)

NEES Nonstructural

Validation of the Analytical Model for Partition Walls

Damage Mechanisms Detected by Analytical Model

NEES Nonstructural

Funded by

Validation – UNR Experiments

- ➤ A C-shaped wall system
- > The first linear and second nonlinear tests (test L1 and test NL2)
- ➤ In test L1, the gypsum boards were screwed to the top tracks while in

Simulation of the Seismic Performance of Nonstructural Systems

Host Institution

X

Funded by

Validation, Out-of-Plane Response

NEES Nonstructural

Validation, Out-of-Plane Response

Damage Prediction

✓ The predicted damage mechanisms in the analytical model consisted of damage to partition corners, damage to the top tracks of return walls, damage to gypsum-to-tracks screw connections, crushing of gypsum boards, and slight damage to track-to-concrete PAF connections.

Analytical Model of Fire Sprinkler Systems

Braces

Solid Braces Elastic Members with Cross Section Properties

Wire Restrainer

Wire Restrainers: **Using Experimental Data**

Piping Tee-Joint Tests at the University at Buffalo

✓ 48 T-Joint Specimens Tested Under Cyclic Loading

Figures from University of Buffalo

Piping Tee-Joint Tests at the University at Buffalo

Threaded

Grooved

Figures from University of Buffalo

N

NEES Nonstructural Simulation of the Seismic Performance of Nonstructural Systems

Development of an Analytical Model For Piping Tee-Joint

□ The "Pinching4" uniaxial material along with a "zeroLength" element was used to simulate the momentrotation response of tee joints (OpenSees)

Total number of 39 parameters were defined

Funded by

Validation of Analytical Model with Experimental Data for Pipe Tee Joint Components – Examples

□ Total number of **29** joint components (Threaded/Grooved) Grooved (2 in.) were calibrated

Threaded (6 in.)

structura Simulation of the Seismic Performance of Nonstructural Systems

0.05

0

0.05

0.05

0.1

0.1

0.1

Specimen #2- Left End

Analytical

Generation of Analytical Model for Supporting Elements – Pipe Hangers

Generation of Analytical Model for Supporting Elements – Pipe Restrainers and Ceiling Hangers

Analytical Model of Suspended Ceiling Systems

Grid Sections

Grid Segments: Elastic Members with Cross Section Properties

Panels

Ceiling Panel Movement: 12 zeroLengthImpact3D Elements

Hangers and Braces

Ceiling Hangers and Diagonal Wires: Using Experimental Data

Compression Posts: Elastic Members with Cross Section Properties

Panel/Sprinkler Interaction

Interactions: Using Experimental Data

Host Institution

Ceiling Joint Tests at the University of Nevada, Reno

✓ More than 100 Ceiling Joint Specimens Tested Under Monotonic and Cyclic Loading

Development of an Analytical Model for Ceiling Joints

 The "Pinching4" uniaxial material along with a "zeroLength" element was used to simulate the forcedisplacement response of the joints (OpenSees)

(rDispP d

(rDispN.d_{min}, rForceN.f(d_{min}))

Deformatio

uForceN.eNF₃)

(eNd4,eNf4)

NEES Nonstructural Simulation of the Seismic Performance of Nonstructural Systems

Generation of Analytical Model for Capturing Ceiling Panel-Sprinkler Head Interaction

Panel-Sprinkler Tests at the University of Nevada, Reno

Generation of Analytical Model for Ceiling Panel Movement

- 12 zeroLengthImpact3D elements were used:
 - **Initial normal gap** ۲
 - **In-plane friction transfer** ۲ after gap closure
 - **Energy dissipation due to** ۲ impact (Hertz Model)

Dancing of Ceiling Panels (Example Provided by UCONN)

Host Institution Funded by N

Location of CPP Nonstructural Systems

Ceilings, Partition Walls, and Sprinkler Piping installed on 4th and 5th floors

Nearly identical configurations over two complete floors

Host Institution

NSF

Funded b

Suspended Ceiling and Sprinkler Piping Plan Views

Fire Sprinkler Piping System

Suspended Ceiling System

MARAN Simulation of the Seismic Performance of Nonstructural Systems,

Host Institution Funded by Y

Integrated Analytical Model

Remove Element Algorithms

□ All of the ceiling and piping supporting elements were removed during the time history analysis when they reached their predefined capacity values.

M

Pattern of Fallen Ceiling Panels (RRS35XY-88Z – Fixed Base)

Outline

Introduction

- NEES Nonstructural Grand Challenge Project
- Experimental Studies (GC Projects)
- Analytical Studies
 - Previous Studies
 - Experimentally Integrated Studies

• Future Directions

- □ Several component-level and two major system-level tests.
- □ Experimentally validated models for ceiling, piping., partition systems and integrated piping/ceiling systems.
- **Development of fragility curves.**
- Provided FEMAP-58 new fragility sets for partition and ceiling systems.
- Provided ASCE7 code modification on ceiling perimeter attachments

Research Areas that Need Improvements

- □ Crack mechanisms in partition gypsum boards.
- □ Out-of-plane behaviour of partition walls.
- □ Nonlinear bending response of partition studs.
- □ Torsional behaviour of pipe joints.
- □ Connection capacity of ceiling and piping supporting elements.
- □ Nonlinear behaviour of ceiling grid segments.
- □ Accurate model of ceiling panels.

Research Areas that Need Improvements

- □ New Construction practices should be pursued
- Other non-structural elements need detailed research, e.g.
 HVAC systems, facads, stairs, equipment
- **Building-dependent response spectra are needed**

Host Institution

Thank You!

Contraction of the

Host Institution

