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Wall Panel Design

• Tilt Up Construction
• Panel Design and Detailing Procedures
• In-Plane Shear and Overturning
• Wall Connections
• Research Needs



3

Tilt-Up Construction
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Tilt-Up Construction

• Site Cast Precast

• Panels size

• 20 ft – 90+ ft 
clear height

• 20 ft – 35+ ft width

• Flexible diaphragm
structures

Clayco / Concrete Strategies Construction
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Tilt-Up Construction

Class A
Architectural 

Osburn Contractors
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Tilt-Up Construction

Industrial

Southern Concrete
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Tilt-Up Construction

Industrial

Interchange Industrial
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Analysis Concepts for Slender Concrete Walls: Anchorage Design

Evolution of provisions for anchorage to flexible 
diaphragms (Lawson et al., 2018)

• ASCE 7-22 Rigid Wall 
Flexible Diaphragms 
Alternative Procedure



Out-of-Plane Panel Design Procedures

• Tilt-up panels designed per ACI 
318-19 Section 11.8. Largely 
defines the required vertical 
reinforcement.

• Based on research conducted in 
the 1980s (Green Book).

• Deviating from these 
recommendations may lead to 
unsafe designs (Technote PRC-
551.3-21).
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In Plane Shear and Overturning

ACI 318-19 Section 18.2 provides guidance for designing three 
categories of walls applicable to tilt up construction
• Intermediate Precast Shear Walls that satisfy ACI 318-19 

section 18.5 (best fit to tilt-up walls per SEAOC blue book).
• Special Structural Walls: that satisfy ACI 318-19 18.2.3-

18.2.8 and 18.10.
• Special Structural Walls constructed using precast 

concrete: that satisfy ACI 318-19 18.2.3-18.2.8 and 18.11.
*Ordinary Precast Shear Walls: Do not apply to SDC D-F.



In-Plane Shear and Overturning

• Tilt-up walls must also be designed to resist the in-
plane forces transferred from roof and floor 
diaphragms.

• The Response Modification Factor (R) used for this 
analysis is 4 (intermediate precast shear wall).

• The Canadian Building Code restricts the R to 2.0 
because tilt-up walls are considered non-ductile (CSA 
A23.3:19).

• Special consideration must be given to piers around 
openings.
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Base Shear – Equivalent static force procedure

• Seismic base shear 
is most commonly 
calculated using an 
equivalent static 
force procedure.

• Linear static models 
used for panel 
behavior with 
complex geometry.
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Most Common 
Panel Types in Tilt 
Up Construction

bw = 10”
lw = 2’-0”
hw = 10’-0”

lw/ bw = 2.4 

hw/ lw = 5 

Column Condition

Panel Design Procedures: Detailing Challenges in Seismic Areas
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Intense Detailing for the Column Condition

Panel Design Procedures: Detailing Challenges in Seismic Areas (cont.)
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𝐸 = 𝐸 + 𝐸 ( ) = 191.1 𝑘𝑖𝑝𝑠

𝐶 = 315.63 𝑘𝑖𝑝𝑠

Load Combo: 1.2 + 0.2𝑆𝑑𝑠 𝐷 + 𝐸

Dock Door Panel (Max Load Transferred Through Diaphragm) 

f c = 4400 𝑝𝑠𝑖

𝐴𝑔 = 1.667 𝑓𝑡2

𝐸 ( ) = 75.7 𝑘𝑖𝑝𝑠

𝐸 = 115.4 𝑘𝑖𝑝𝑠

Special boundary elements not required per Section 18.10.6.5
Proportion transverse reinforcement per columns in special 

moment frame

Panel Design Procedures: Detailing Challenges in Seismic Areas (cont.)
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ACI 18.7 – Columns of 
Special Moment Frames 𝐸 = 191. 1𝑘𝑖𝑝𝑠

𝑉 =
2𝑀

h
𝑉 = 21.03 kips

𝑉 = 𝑉 = 21.03 𝑘𝑖𝑝𝑠

𝜑𝑉 = 79.48 𝑘𝑖𝑝𝑠 (#3 @ 2.5” O.C.)

𝜑𝑉 = 33.12 𝑘𝑖𝑝𝑠 (#3 @ 6” O.C.)

Panel Design Procedures: Detailing Challenges in Seismic Areas (cont.)
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Base Shear – Equivalent static force procedure
Requirements Per the National Building Code of Canada 
2015, and CSA A23.3-14:
• Seismic base shear is most commonly calculated using 

an equivalent static force procedure
• Based on research from UBC Tilt-Up walls are classified 

as limited ductility and get an effective R = 2.0 while 
enforcing a rocking mechanism

• Dynamic Analysis is not used as a model that 
incorporates rocking panel response would be highly 
non-linear and difficult to model.
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Permitted Ductile limit states & limitations

•Based on Tellier (2013) and others at University of 
British Columbia, a rocking limit state is the most 
feasible energy dissipation mechanism (as opposed to 
panel sliding or non-ductile panel failure).
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Approved ductile panel-to-panel connector – EM5



20

Approved ductile panel-to-panel connector – EM5
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Issues with overturning as ductile dissipation mechanism

• The extent of the compression 
zone isn’t easily defined.

• The degree of lateral support 
provided by panel to panel 
connectors is largely undefined.
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Compression at panel edges during rocking
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Performance
Christchurch 2011 and Chile 2010
• Several groups reported good performance of tilt up structures.
• Rocking behavior observed with spalling of corners (Urmson and 
Toulmin 2012), backed up by Chile earthquake on thin walls (Adebar
2013).
• Henry and Ingham (2011) found many instances of poor connection 
performance.

Adebar (2013) Henry & Ingham (2012)
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Research Needs

SEAOC Blue Book
• Is the selected method of distributing in-plane 

shears critical to shear wall performance? 
• Can a simplified method of shear distribution 

achieve acceptable results?
• Are deformation limits for wall anchorage systems 

necessary and how should they be set?
• As wall anchorage is eliminated as the weak 

element of tilt-up structures, will the mode of 
failure simply transfer to another vulnerable portion 
of the system?
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Research Needs

Additional needs
• Development of RWFD analysis methods has 

simplified analyses for complex panel geometries, 
rocking behavior and non-diaphragm connections. 
None of which have experimentally been observed.

• Panel/connection interaction with foundation is a 
concern.

• The performance of panels with large openings is 
not well understood, particularly if rocking is 
enforced

• Are prequalified connections needed and how to 
define their performance and limits?

• Are seismic coefficients appropriate (US vs CAN)?
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