

Innovative Characteristics and Opportunities of NHERI@UCSD

Gilberto Mosqueda, Professor University of California, San Diego

December 12, 2016

NHERI @ UCSD Workshop, 12-13 December, 2016

Overview

- Instrumentation
 - GPS sensors
 - Drones
 - Testbed Structure
- Hybrid Simulation Hardware available at NHERI-UCSD
 - Control system, ScramNet, and Matlab xPC Environment
 - External actuators
- Implementation of Hybrid Simulation
 - Example by Andreas Schellenberg

Use of GPS Displacement Sensors

- Example application includes a total of 6 GPS stations (provided by Prof. Tara Hutchinson and Xiang Wang)
 - 3 on the roof (see plan layout)
 - 2 at building mid floors (cantilevered at 3rd and 5th floors)
 - 1 reference ground station (~150 ft west of building)
- GPS stations co-located with high-rate MEMS & Kinematric accelerometers
- Accurate displacement measurements
 - captures large residual displacements
- Data shown from
 - EQ9:RRS-150: near-fault MCE motion, Sa=2.5 g at T1
 - Building sustained extremely large residual displacement demand (> 1 % residual roof drift & ~6% residual story drift at level 2)

GPS and Accelerometer Layout (Roof)

GPS and Accelerometer Layout (Roof)

Center Station

GPS stations on the roof (UAV image)

Corner Station

Test Building before and after EQ9

- ~6% residual story drift ratio at level 2
- > 1% residual roof drift ratio (> 20 cm)

GPS Roof Measurement in EQ7 & EQ9

Inspection of Earthquake and Fire Damaged Buildings Using Unmanned Aerial Vehicles

Falko Kuester

Director, CISA3-CHEI-DroneLab Calit2 Professor for Visualization and Virtual Reality Professor, Department of Structural Engineering

California Institute for Telecommunications and Information Technology (Calit2) University of California, San Diego http://chei.ucsd.edu/dronelab

UAV Strengths

- Can deliver or collect data where and when needed
- Timely access to difficult to reach places
- Can put attention where it is needed most
- Enabler for rapid response
- Enabler for continuous monitoring
- Require streaming for situational awareness
- Require an ecosystem supporting innovation

UAV Tasks

Pre-event, event, post-event imaging:

- Semi-autonomous UAV site survey with multiple sensor payloads
- Spot surveys using traditional terrestrial imaging techniques

Derivative data products

- 3D model creation using structure from motion (SfM) techniques
- Data synthesis and augmentation
- Explore and evaluate damage detection and classification strategies

Rapid UAV Site Surveys

ACQUISITION

• Diagnostic Imaging & Sensing

calisition

Eoipeululossia

Curation

SISHEDA

Data

- Analytical Diagnostics
- Communications
- Robotics

Rapid Response

Mainstream Media

DISSEMINATION

- Field Testing
- Training
- Publishing
- 3D Printing
- Citizen Science

CURATION

- Data Storage
- Data Bases
- Meta Data Augmentation

Community Database

Cyber Infrastructure

ANALYSIS

- Modeling & Simulation
- Data Fusion
- Visual Analytics
- Virtual Reality
- Augmented Reality

SfM-Based Model Creation from UAV Data

Calit2

UC San Diego Jacobs School of Engineering

Earthquake & Post-Earthquake Fire Performance of Mid-Rise Light-Gauge Cold-Formed Steel Framed Buildings

Compilation of Select Earthquake & Post-Earthquake Fire Scenarios

Image Synthesis from 3D Model Data

(a) Pre-completion

(c) Post-event

Virtual Reality for Remote Presence and Inspection

Testbed Structure

- Testbed Structure
- Reconfigurable and reusable test frame that can be used to test a variety of structural and nonstructural components and systems
- Topic of discussion for Tuesday afternoon session
- Target applications in protective systems, nonstructural systems and hybrid simulation

Hybrid Simulation

• Equation of motion for prototype structure

$$ma + cv + r = f$$

- Hybrid simulation combines:
 - Physical models of structural resistance
 - Computer models of structural damping and inertia
- Enables seismic testing of large- or full-scale structural models
- Solve equation of motion using numerical integration algorithms

Implementation Issues

- Integration Algorithms
 - Implicit or explicit
 - Integration time step
 - Accuracy and stability
- Rate of testing
 - Time scaling
 - Pseudo-dynamic vs. dynamic
 - Material strain rate effects
 - Observation of damage
- Experimental Errors
 - Actuator tracking errors
 - Propagation of errors

Central Difference

Newmark's Method

Real-Time Dynamic Hybrid Simulation

- Real-time Dynamic Hybrid Simulation combines use of shake tables, actuators and computational models
- Measured force includes inertia and damping

Real Time: Loading rate is real event rate

(Reinhorn and Shao)

- Hardware integrated through ScramNet Reflective Shared Memory for real-time communication between
 - Exchange of data on the order of microseconds
- MTS 469D Shake Table Controller
 - Can be set to take control commands from ScamNet
- Multi-channel MTS FlexTest Actuator Controller
- xPC Target/Simulink Real-Time
 - User programmable environment using Matlab- Simulink that runs in real-time
 - Send commands and receive feedback from actuator controllers through ScramNet
- 50-ton dynamic actuator

Hybrid Simulation Control System

Real time integrated computational capabilities available at NHERI@UCSD

Real-time Dynamic Hybrid Simulations

Large scale RTDHS conducted at Tongji University

NHERI @ UCSD Workshop, 14-15 December, 2015

User defined structural model and boundary conditions can be implemented in Simulink for 'hard' real-time

DS1104DAC C

DAC D S1104DAC_C2

DAC

DIS1104DAC C3 DAC

DS1104DAC_C4

D S1104DAC C5

DAC

DS1104DAC C6

DAC DS1104DAC C

DAC

DS1104DAC_C8

Real-time Hybrid Shake Table Testing

Correction of online force measurements

System identification of platen properties (Ozcelik et la. 2008)

Real-time Hybrid Shake Table Testing

Correction of online force measurements

Measured forces using actuator load cells include inertia and friction

 $F=m\downarrow e u \downarrow x + F \downarrow Friction sign(u \downarrow x) + cu \downarrow x + d$

Inertia

Static Friction

Dynamic Friction

NHERI @ UCSD Workshop, 14-15 December, 2015

Planned Upgrades and improvements:

- Update Simulink Real-Time computer and Simulink Host
 - ✓ High performance computers with multi-core processing
 - Enable more complex numerical models for real-time hybrid simulation
- Evaluation of delay compensation methods
 - ✓ Feed Forward and improved tuning for delay
 - ✓ Implementation of Adaptive Time Series (ATS) compensator (Chae et al. 2013)

Planned Commissioning Test for Hybrid Simulation:

- Experimentally evaluate hybrid testing capabilities and characterize system response (delays and other errors)
- Use of shake table and external actuator
- Scheduled for Spring 2016

- For hard real-time, user can program numerical structural model in Simulink
- Potential to interface with real time programs for structural analysis through ScramNet
- Structural analysis software provides the advantage of access to libraries of integrators, elements etc.
- Delay compensation is critical to hybrid simulation
 - Adaptive Time Series (ATS) delay compensators works well for shake tables and individual actuators (Chae, Kazemibidokhti, and Ricles)

Consideration of Dynamic Hybrid Simulation

- Simulate large and complex structures that exceed capabilities of the shake table such as long span bridges and tall buildings
 - Test a critical part of the structure at large scale
 - Numerically capture system level response and
- Some type of structures exhibit rate dependent effects and distributed inertial forces requiring dynamic testing

User Preparation

- Selection of structural model
 - $\checkmark\,$ Computer modeling, substructures and boundary conditions
- Design of experimental setup within capacity of facility
- Communication link between computer model and hardware for custom software
- Selection of integration algorithm and its implementation in real-time software if necessary
- Pre-test simulation with numerical model of test setup
- Low level simulations to verify system performance and feedback loops
 - ✓ Include some time for development and implementation of algorithms
- Execute test sequence

Concluding Remarks

- > Hybrid simulation can be a cost-effective and reliable approach to expand testing capabilities
- Control of numerical and experimental errors is critical to accuracy and stability of a hybrid test
- NHERI @UCSD has the hardware in place to conduct real-time dynamic hybrid tests with shake table substructures and external actuator
- NHERI@UCSD can provide expertise to support the implementation of hybrid simulation
- Current efforts at UCSD to identify response characteristics of shake table for hybrid simulation