

Rocking Foundations

Validation using large scale shake table testing

Tom Shantz Caltrans Division of Research and Innovation December 12, 2016

Project history

- Caltrans released a RFP for "innovative foundations".
- Bruce Kutter (UCD) proposed use of "rocking foundations".
- Several studies were performed at the UCD centrifuge.
- Numerical model and simplified design procedure developed
- Validation of numerical model and development of a full bridge design procedure

Basic concept

Single column bents:

Early testing

Centrifuge testing of different H/B ratios

Rocking behavior

• Typical results

Trying to capture bridge behavior

Centrifuge testing of simple bridges

To enable rocking, the pin must be moved from the bottom of the column to the top.

Analytical models

Simple hand calcs:

Transform into an equivalent SDF

Stability evaluation

NHERI @ UCSD Workshop, 12-13 December, 2016

Motivation for shaketable testing

- Validate numerical model
- Investigate "off-axis" rocking
- Investigate pile-cap connection details
- Demonstrate that even under extreme shaking tip-over isn't a issue

Test Layout

Key parameters

- *W* = 290 kN
- H/L = 2.0
- $A / A_c = 13$
- $FS_v = 24$
- $C_r = 0.26$
- $C_y = 0.47$

Test layout

(b) South Elevation View

Test layout

Test specimen construction

Outrigger restrainer

Test specimen construction

• Adding the block mass

• Erection of vertical elements and post-tensioning to the shake table platen

• Placement of Concrete Panels

• Completed soil box

Interior box dimensions

NHERI @ UCSD Workshop, 12-13 December, 2016

• Soil box interior

16 steel angles bolt to the platen to provide noslip condition at the bottom boundary

4 PT rods running through the parts of corner column base plates sticking into the box

Filling and removal

(slow and cheap)

Hopper and crane method (fast and expensive)

Membrane placement

• A geotextile was placed first to protect the liner

Membrane placement

Placement and patching

٠

Soil placement

• Saturation and dewatering system

Soil placement

Soil Compaction

- Loose lifts of 200 mm thick compacted at a water content of 6% down to about 150 mm
- Walk-behind vibratory plate with 8 passes per lift
 - ✓ First 4 lifts after placement of liner and saturation/dewatering system
 - ✓ Lifts above the footings' base elevation
 - ✓ Near box walls (in general)
- Skid-steer loader with an attached vibratory roller (1.22 m wide, 7.95 kN heavy vibrating at 40 Hz) with 6 passes per lift

Instrumentation

• Soil accelerometers placement

Marking of locations before placement

Placement of accelerometers

Covering with soil and cables running

Instrumentation

> Pore Pressure Transducers (PPT) Placement

• Challenging to prevent desaturation of sensors during the 2-3 weeks period for which they remained above water table

Specimen placement

Instrumentation

Structures' Instrumentation

- Mass Blocks' String Potentiometers
 - ✓ 6 linearly independent String Pots (3 horizontal + 3 vertical) to determine 6 DoFs

Instrumentation

Video Cameras Used

- Coaxial cameras [8]
 - ✓ Wired, power-supported, low resolution (768 × 494 pixels at 30 fps)
 - ✓ Live video streaming; can be played back during testing
 - ✓ 168 out of 168 events successfully recorded
- GoPro2 cameras [11]
 - ✓ Wireless, battery-supported, high resolution (1920 × 1080 pixels at 30 fps)
 - ✓ Can be accessed and played back after testing
 - ✓ 126 out of 231 events successfully recorded
- Sony cameras [2]
 - ✓ Man-operated, battery-supported, high resolution (1920 × 1080 pixels at 30 fps)
 - ✓ Can be accessed and played back after testing
 - ✓ 29 out of 42 events successfully recorded

Loading input

For all motions the time was compressed by 1.73

NHERI @ UCSD Workshop, 12-13 December, 2016

8

Test Response

Column Drift Ratio Time Histories for Test Days 1 and 2

NHERI @ UCSD Workshop, 12-13 December, 2016

Concluding Remarks

- The road from initial concept to deployment is a long one...
 - Positives: Better performance for less \$. The shaketable testing provided a clear illustration of excellent performance under extreme loading.
 - Negatives: Requires a substantial change in design philosophy
- Need to work on pile-footing connection details to expand application to pile supported foundations
- Soil box assembly and disassembly is expensive

Acknowledgements

- Principal investigators
 - Marios Panagiotou (formerly UCB)
 - Bruce Kutter (UCD)
 - Patrick J. Fox (formerly UCSD)
 - Jose I. Restrepo (UCSD)
- Student researchers
 - Grigorios Antonellis (formerly UCB)
 - Gabriele Guerrini (formerly UCSD)
 - Andrew Sander (UCSD)
 - Lijun Deng (UCD) previous centrifuge work
- Technical staff at NEES @ UC San Diego
 - Dan Radulescu
 - Paul Greco
 - Alex Sherman
 - Hector Vicencio
 - Raymond Hughey
 - Robert Beckley
 - Lawton Rodriguez

