

NHERI@UCSD New Capabilities/Technologies: Hybrid Simulation and ECO

Gilberto Mosqueda Professor UC San Diego

Application of Hybrid Simulation

- Simulate large and complex structures that exceed capabilities of the shake table such as long span bridges and tall buildings
 - Test a critical part of the structure at large scale
 - Numerically capture system level response
- Some type of structures exhibit rate dependent effects and distributed inertial forces requiring dynamic testing

Hybrid Simulation Control System

Real time integrated computational capabilities available at NHERI@UCSD
Windows:

NHERI @ UCSD Workshop, 13-14 December, 2018

Real-time Hybrid Simulation Control System

- Hardware integrated through ScramNet Reflective Shared Memory for real-time communication between
 - Exchange of data on the order of microseconds
- MTS 469D Shake Table Controller
 - Control commands received from ScamNet
- Multi-channel MTS FlexTest Actuator Controller

> xPC Target/Simulink Real-Time

- User programmable environment using Matlab- Simulink that runs in real-time
- Send commands and receive feedback from actuator controllers through ScramNet

External 50-ton dynamic actuator

Real-time Hybrid Simulation Control System

- For hard real-time, users can program numerical structural model in Simulink
- Potential to interface with real time programs in other operating systems and program for structural analysis through ScramNet
 - Applications with OpenSees/OpenFresco have been verified
- Structural analysis software provides the advantage of access to libraries of integrators, elements etc.
- Delay and error compensation is critical to hybrid simulation and can be implemented in real-time environment

Real-time Hybrid Simulation Control System

User defined structural model and boundary conditions can be implemented in Simulink for 'hard' real-time

Advanced Numerical Models using OpenSees/OpenFresco

NHERI @ UCSD Workshop, 13-14 December, 2018

BUILDING SPECIMEN

Recent Applications

Hybrid Simulation Commissioning Tests using LHPOST

- Collaborative development effort with NHERI SimCenter
- Data workflow and curation with NHERI DesignSafe

 $M^{N}\ddot{x}(t) + C^{N}C\dot{x}(t) + K^{N}x(t) = -M^{N}L\ddot{x}_{g}(t) + f_{s}^{I}$ $M^{E}\ddot{x}(t) + C^{E}\dot{x}(t) + K^{E}x(t) = -M^{E}L\ddot{x}_{T} = -M^{E}L(\ddot{x}_{g}(t) + \ddot{x}^{N,I}(t))$

where f_s^{I} only affects the interface DOF

Assuming no mass in the interface of the experimental

Recent Applications

Hybrid Simulation Commissioning Tests using LHPOST

- Two different approaches were implemented for the hybrid simulation computational drivers
 - ✓ programmed fully in Simulink RT
 - ✓ Numerical model in OpenSees/OpenFresco
- Displacement control of shake table
- Two different integrator algorithms were used: the generalized Alpha-Operator-Splitting and the explicit KR-alpha (adapted to shake table sub-structuring)
- Application of adaptive time delay compensation was used (ATS compensator, Chae et al (2013))
- SDOF and MDOF numerical models were implemented

Hybrid Simulation using LHPOST

Experimental Setup

Rigid Mass (56 kip)
 over four triple
 friction pendulum
 bearings

Hybrid Simulation using LHPOST

Experimental Results

The time delay (average 34 ms) introduced by the shake table system was alleviated with an ATS compensator.

NHERI @ UCSD Workshop, 13-14 December, 2018

Hybrid Simulation using LHPOST

Experimental Results

The results using OPS-OPF and Simulink Real Time as the computational driver compare well.

NHERI @ UCSD Workshop, 13-14 December, 2018

Publication of Data

UCSD LHPOST Hybrid Commissioning Tests have been published using Hybrid Simulation Data Model on DesignSafe

Vega, Manuel; Schellenberg, Andreas; Caudana, Humberto; Mosqueda, Gilberto, (2018-12-06), "Five story building with tunned mass damper", DesignSafe-CI [publisher], Dataset, doi:10.17603/DS2C687

NHERI@UC San Diego ECO Goals

- 1. To support technology transfer to practitioners and future engineers and promote implementation of research results into practice. (WBS 1.5.1)
- 2. Highlight innovative research conducted at NHERI@UC San Diego facilities (WBS 1.5.2)
- 3. Demonstrate the benefits of research to the public and critical decision makers (WBS 1.5.2)

Tours & Professional Development Workshops

Jacobs School Media Relations Group

NHERI@UC San Diego ECO Goals

- 4. Engage students and broaden participation of groups typically underrepresented in STEM (WBS 1.5.3)
- 5. Professionally develop undergraduate and graduate students (WBS 1.5.3 and 1.5.4)
- 6. Provide unique and stimulating experiences for undergraduates in high-quality engineering research (WBS 1.5.4)

Seismic Outreach Ambassador Program

NHERI REU program

NHERI @ UCSD Workshop, 13-14 December, 2018

NHERI 4 Kids

NHERI @ UCSD Workshop, 13-14 December, 2018

Concluding Remarks

- Hybrid Commissioning tests demonstrate new capabilities that can expand the complexity of largescale geotechnical and structural systems that can be tested on LHPOST.
- Large-scale ECO activities broaden participation of community in hazard research
- NHERI@UCSD supports the implementation special initiatives by research community
- The upgraded LHPOST6 will provide new opportunities for research and outreach