

Joint NHERI@UC San Diego – RAPID Researcher Workshop

December 14-15, 2020 University of California, San Diego

General Housekeeping Items

 Workshop materials (workshop agenda, flyer, presentation PDFs, videos, etc.) can be downloaded from Google drive (link is provided in the agenda):

https://drive.google.com/drive/folders/1M4b5IhIL3KJpbeFRfrhXVw2mXJPk Ar5

To request PDH Credit Certificate, please contact:

Dr. Koorosh Lotfizadeh

E-mail: klotfiza@ucsd.edu

For any problems and technical difficulties, please contact:

Dr. Koorosh Lotfizadeh

E-mail: klotfiza@ucsd.edu

Workshop Objectives

- Disseminate information on the use of the NHERI@UC San Diego Experimental Facility and NHERI RAPID Facility to conduct state-of-theart research and experimentation in natural hazards mitigation.
- Identify and formulate grand challenge research needs to advance the science, technology and practice in earthquake disaster mitigation and prevention and to improve seismic design codes and standards.
- Provide information for preparing competitive NSF research proposals which leverage the NHERI@UC San Diego and NHERI RAPID facilities.
- Identify and develop opportunities to utilize the NHERI@UC San Diego and NHERI RAPID facilities.
- Promote collaborative team research interests to use the two facilities jointly.
- Brainstorm on example uses at each facility to solve grand challenges in natural hazards mitigation.

Workshop Program – Monday

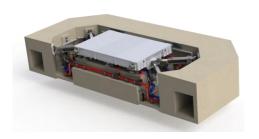
Day 1 (Dec 14, 2020): Facility Capabilities and Best Practices for Proposal Preparation

8:00 – 8:10am	Welcome, introduction & workshop schedule (Prof. Joel Conte, UC San Diego)	
8:10 – 9:00am	NHERI@UC San Diego: Facility description and capabilities (Prof. Joel Conte)	
9:00 – 9:50am	NHERI RAPID: Facility description and capabilities (Prof. Joseph Wartman, Univ. of Washington at Seattle)	
9:50 - 10:00am	Q&A Session	
10:00 – 10:15am	Coffee break	
10:15 – 10:45am	DesignSafe Tools and Capabilities (Including Best Practices for Successful Upload/Organization of Data Depot) (Dr. Tim Cockerill, Texas Advanced Computing Center; Prof. Gilberto Mosqueda, UC San Diego)	
10:45 – 11:15am	Preparing an NSF Proposal to Utilize NHERI@UC San Diego (Prof. Tara Hutchinson, UC San Diego)	
11:15 – 11:45am	How to Write a Successful NSF-RAPID Proposal (Prof. Jeffrey Berman, Univ. of Washington at Seattle)	
11:45 – 12:15pm	Q&A and Open Discussion.	
12:30pm	Office Hours (advising on future projects); see agenda for availability and zoom links	

Workshop Program – Tuesday

Day 2 (Dec 15, 2020): New Features and Cross Pollination between UC San Diego and RAPID

8:00 – 8:10am	Welcome & Workshop Schedule (Prof. Joel Conte, UC San Diego)
8:10 – 8:30am	Virtual Tour of Construction of LHPOST6 Facility
8:30 - 8:50am	Virtual Tour of Rapid Facility
8:50 – 9:20am	New Capabilities/Technologies (Prof. Gilberto Mosqueda and Prof. Tara Hutchinson, UC San Diego)
9:20 – 9:50am	RAPID Equipment and Examples of Large-Scale Experiments (Prof. Jeffrey Berman, Univ. of Washington at Seattle)
9:50 – 10:05am	NSF NHERI Facilities and Research Programs (Dr. Joy Pauschke, National Science Foundation)
10:05 – 10:15am	Q&A
10:15 – 10:30am	Coffee break
10:30 – 11:00am	Example Project: UC San Diego (Dr. Koorosh Lotfizadeh, UC San Diego)
11:00 – 11:30am	Example Project: RAPID (Prof. Paolo Calvi, Univ. of Washington at Seattle)
11:30 – 12:30am	Panelist Presentations and Open Discussion (Prof. Paolo Calvi; Prof. Jonathan Hubler, Villanova Univ.; Prof. Erica Fisher, Oregon State Univ.)
12:30 - 12:40am	Concluding Remarks (Prof. Joel Conte, Prof. Joseph Wartman)
1:00pm	Office Hours (advising on future projects); see agenda for availability and zoom links


6

NHERI@UC San Diego: Facility Description and Capabilities

Joel Conte, Professor University of California, San Diego

Joint NHERI@UC San Diego — RAPID Researcher Workshop

December 14-15, 2020 University of California, San Diego

NHERI@UC San Diego Personnel

Joel Conte PΙ Site Admin.

Co-PI Site User Services Site Performance Site Operations

Tara Hutchinson Gilberto Mosqueda Benson Shing Co-PI

Co-PI

Lelli Van Den Einde Co-PI Education and Community Outreach

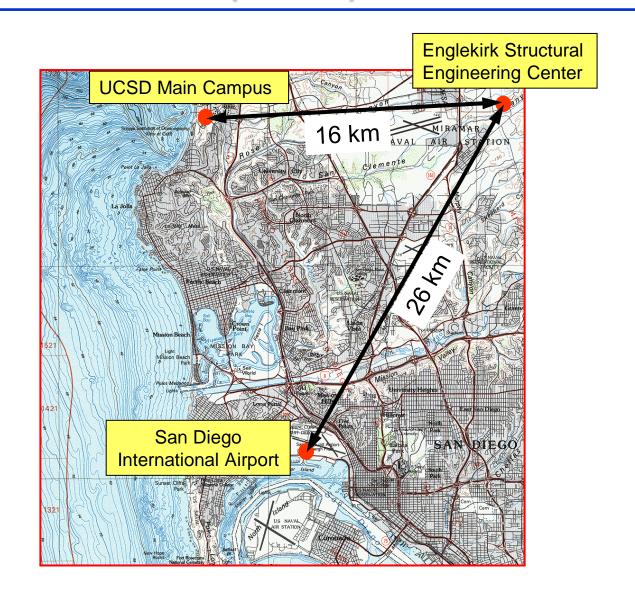
Enrique Luco Senior Personnel

Koorosh Lotfizadeh **Acting Site Operations** Manager

Darren McKay Res. & Dev. Engineer, Shake **Table Operator**

Robert Beckley IT Manager

Alex Sherman Site Foreman **Development Technician**


Jeremy Fitcher Development **Technician**

Outline

- Overview of NHERI@UC San Diego Large High-Performance
 Outdoor Shake Table (LHPOST) Experimental Facility
 - Description of Facility
 - Performance Characteristics
 - Capabilities and Limitations
- Select Large-Scale Shake Table Tests Performed on the NHERI@UC San Diego Shake Table
- Current Six Degree-of-Freedom (6-DOF) Upgrade of LHPOST into LHPOST6
 - Description of Upgrade
 - Targeted Performance Characteristics of LHPOST6
- New Research Opportunities Made Possible by the LHPOST6

Overview of Englekirk Structural Engineering Center (ESEC) and Large High-Performance Outdoor Shake Table (LHPOST)

Englekirk Structural Engineering Center (ESEC)

Englekirk Structural Engineering Center

Soil-Structure-Interaction Facility

HYDRAULIC POWER SYSTEM BUILDING

BLAST/IMPACT TEST FACILITY

Large High-Performance Outdoor Shake Table (LHPOST)

IAS Accreditation of ESEC

CERTIFICATE OF ACCREDITATION

This is to attest that

ENGLEKIRK STRUCTURAL ENGINEERING CENTER

10201 POMERADO ROAD SAN DIEGO, CA 92131

Testing Laboratory TL-356

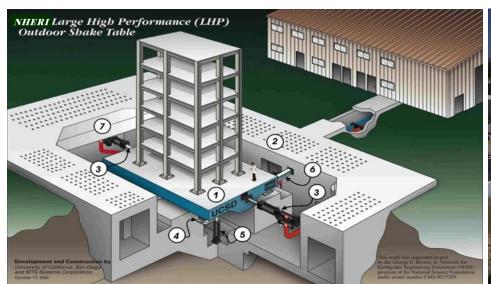
has met the requirements of AC89, IAS Accreditation Criteria for Testing Laboratories, and has demonstrated compliance with ISO/IEC Standard 17025:2005, General requirements for the competence of testing and calibration laboratories. This organization is accredited to provide the services specified in the scope of accreditation maintained on the IAS website (www.iasonline.org).

This certificate is valid up to April 1, 2019.

This accreditation certificate supersedes any IAS accreditation bearing an earlier effective date. The certificate becomes invalid upon suspension, cancellation or revocation of accreditation. See www.iasonline.org for current accreditation information, or contact IAS at 562-364-8201.

Raj Nathan President

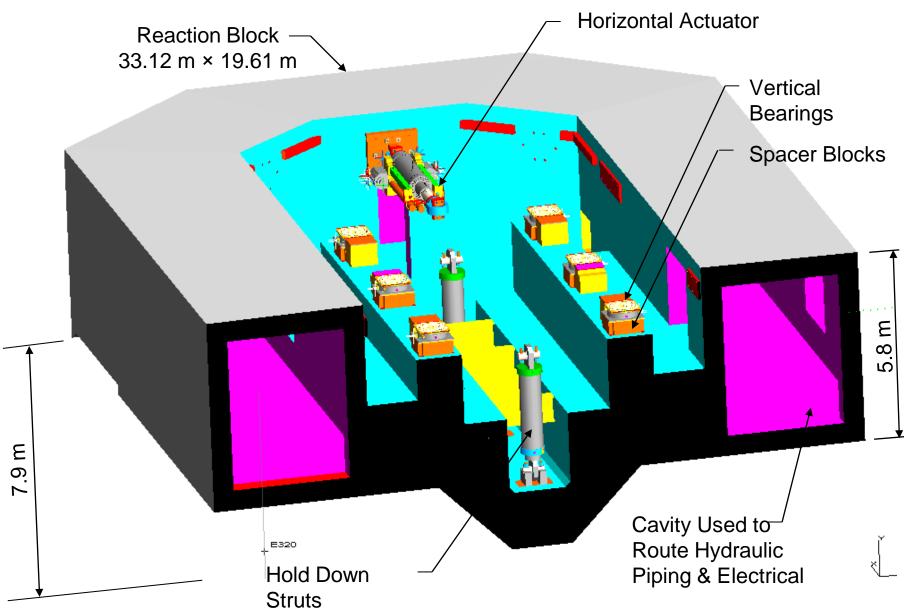
Objectives of the NHERI@UC San Diego EF


- The vision for the NHERI@UC San Diego Shake Table experimental facility is rooted on three critical needs for advancing the science, technology, and practice in earthquake disaster mitigation and prevention:
 - (1) Fundamental knowledge for understanding the **system-level behavior** of **buildings**, **critical facilities**, **bridges**, and **geo-structures** during earthquakes, **from the initiation of damage to the onset of collapse**.
 - (2) Experimental data to support the development, calibration and validation of high-fidelity physics-based computational models of structural/geotechnical/soil-foundation-structural systems that will progressively shift the current reliance on physical testing to modelbased simulation for the seismic design and performance assessment of civil infrastructure systems.
 - (3) **Proof of concept, benchmark and validation/verification tests** for seismic retrofit methods, protective systems, and the use of new materials, components, systems, and construction methods that can protect civil infrastructure systems against earthquakes.

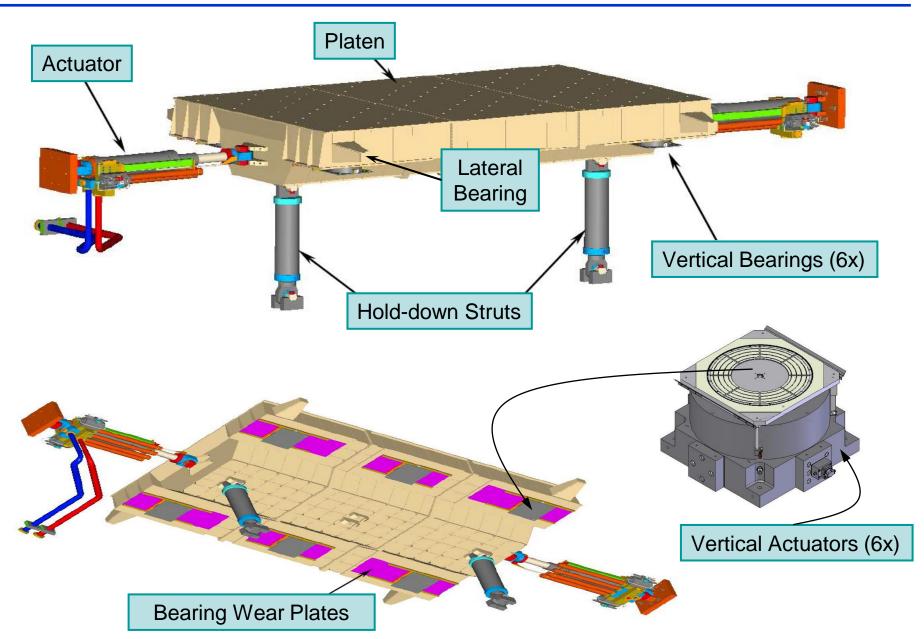
Large High-Performance Outdoor Shake Table (LHPOST)

- Designed to permit accurate simulation of severe earthquake ground motions and, particularly, strong near-source ground motions.
- Lack of height limitation allows testing of full- or very large-scale structural specimens.
- Table designed in 2001-2002, built in 2002-2004, and commissioned on October 1, 2004, as part of the NSF NEES Network.
- 34 major research and commercial projects were conducted in 15 years of operation (2004 2019):
 - Reinforced concrete buildings and bridge column
 - Precast concrete parking structure
 - Unreinforced and reinforced masonry building structures
 - Metal and light-steel building structures
 - Woodframe/timber dwellings and buildings
 - Wind turbine
 - Soil retaining walls, spillway retaining wall
 - Underground structures (deep and shallow)

Large High-Performance Outdoor Shake Table (LHPOST)

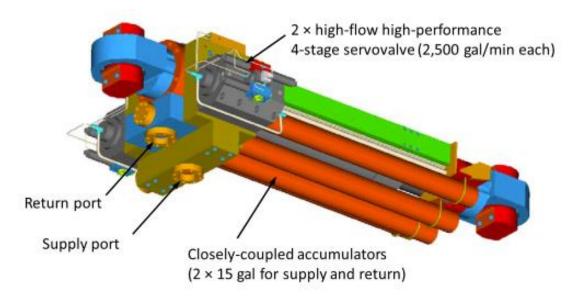


Performance Characteristics of LHPOST in Past 1-DOF Configuration (2004 – 2019)				
Designed as a 6-DOF shake table, but built as a 1-DOF system to accommodate funding available				
Stroke	±0.75m			
Platen Size	40 ft × 25 ft (12.2 m × 7.6 m)			
Peak Velocity	1.8 m/sec			
Peak Acceleration	4.7g (bare table condition); 1.2g (4.0MN/400 tonf rigid payload)			
Frequency Bandwidth	0-33 Hz			
Horizontal Actuators Force Capacity	6.8 MN (680 tonf)			
Vertical Payload Capacity	20 MN (2,000 tonf)			
Overturning Moment Capacity	50 MN-m (5,000 tonf-m)			


Capabilities/Provisions of the NHERI@UC San Diego EF

- Simulation of near-source earthquake ground motions which involve large acceleration, velocity and displacement pulses.
- Seismic testing of extensively instrumented large/full-scale structural specimens under extreme earthquake loads at near real-world conditions.
- Seismic testing of extensively instrumented large-scale geotechnical and soil-foundation-structural systems by using the shake table in combination with large soil boxes.
- Basic capabilities for hybrid shake-table testing.
- Education of graduate, undergraduate, and K-12 students, as well as news media, policy makers, infrastructure owners, insurance and the general public, about natural disasters and the national need to develop effective technologies and policies to prevent these natural hazard events from becoming societal disasters.

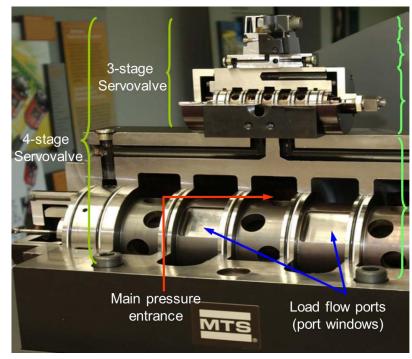
Connection of Platen to Reaction Block



Mechanical and Servo-Hydraulic Components

Horizontal Actuators

Horizontal Actuators Specification		
Dynamic stroke	+/- 0.75 m	
Force Capacity (Tension/Compression)	2.7 MN / 4.2 MN	
Rod diameter	0.3048 m	
Piston Diameter	0.5080 m	
Tension Area	0.1297 m ²	
Compression Area	0.2027 m ²	
Peak Extend Flow Rate	21,890 lt/min	
Peak Retract Flow Rate	14,010 lt/min	



Temposonics magnetostrictive position sensor

High-Flow High-Performance Servovalves

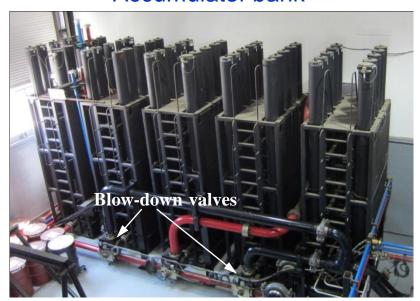
Servovalves (Qty. 2E + 2W)		
Pilot 2 nd Stage Rating (Manufacturer Moog)	19 lt/min	
Pilot 3 rd Stage Rating	630 lt/min	
4 th Stage Flow Rating	10,000 lt/min (2,500 gpm)	
Port Area Ratios	1:0.8:0.64:0.5	
Valve Sleeve Windows Area Ratio	1:0.64	

1st stage (Pilot stage)

2nd stage

3rd Stage

4th Stage (Main stage)


Courtesy of MTS
Systems Corporation

Hydraulic Power System

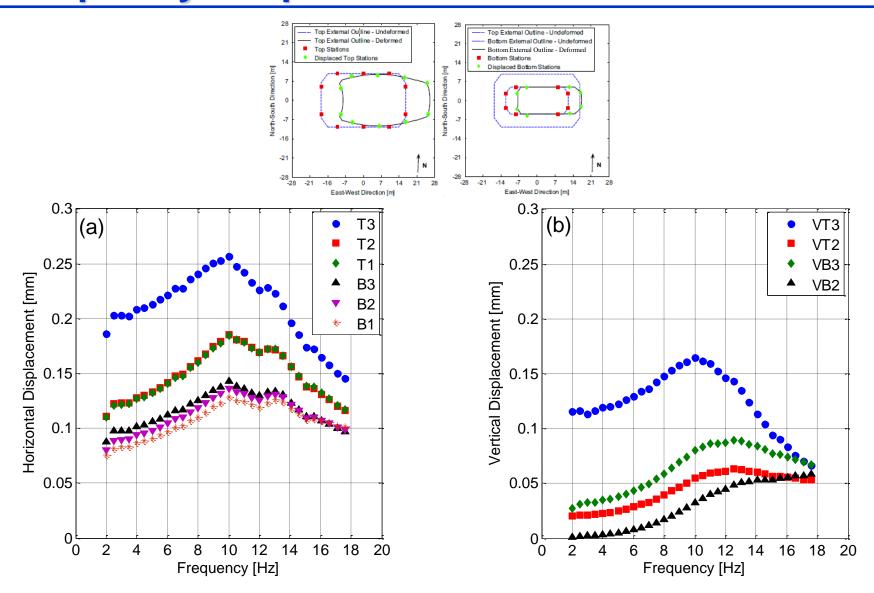
Hydraulic Power System			
Accumulator swept displacement	7.5 m		
Accumulator bank pressure	35 MPa		
System pressure	20.7 MPa		
Blow-down maximum flow rate	38,000 lt/min		
HPU flow rate @ 35 MPa (5,000 psi)	431 lt/min		
HPU flow rate @ 20.7 MPa (3,000 psi)	718 lt/min		
Surge tank capacity	20,000 lt		

Accumulator bank

Surge tank

Bare Table Motions

Forced Vibration Tests of the Reaction Mass at the NEES@UC San Diego Shake Table

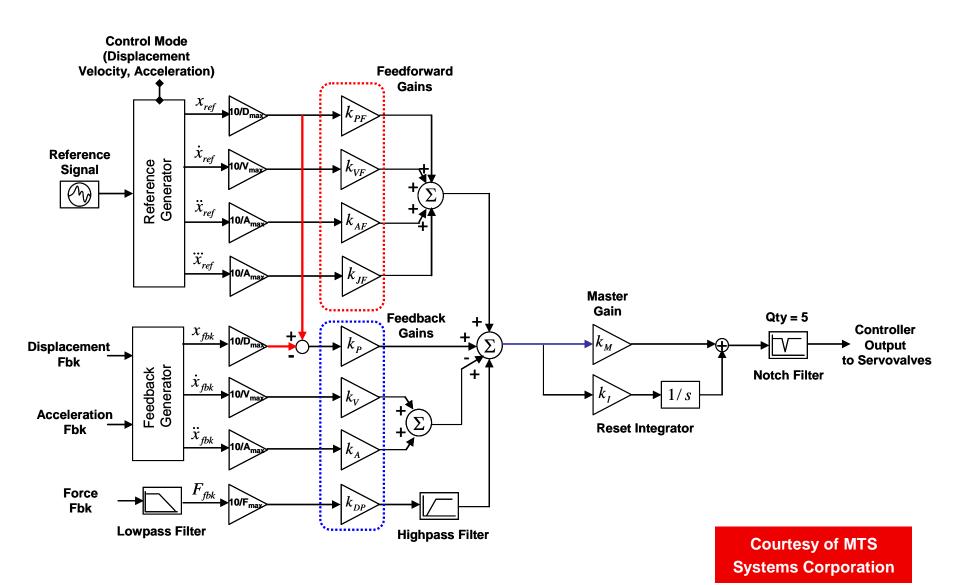


Forced Vibration Characterization Tests

Instrument locations on Reaction Block and adjacent foundations

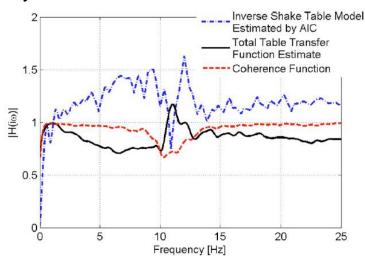
Frequency Response Functions of Reaction Mass

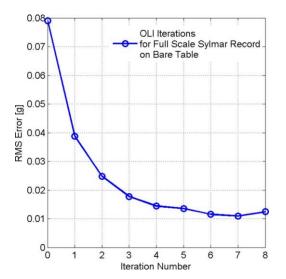
Amplitudes of the EW (a) and vertical (b) frequency response functions of the reaction block for EW excitation. The results shown are based on Test 2 and correspond to scaled displacement amplitudes for a harmonic force of constant amplitude 6.8 MN.

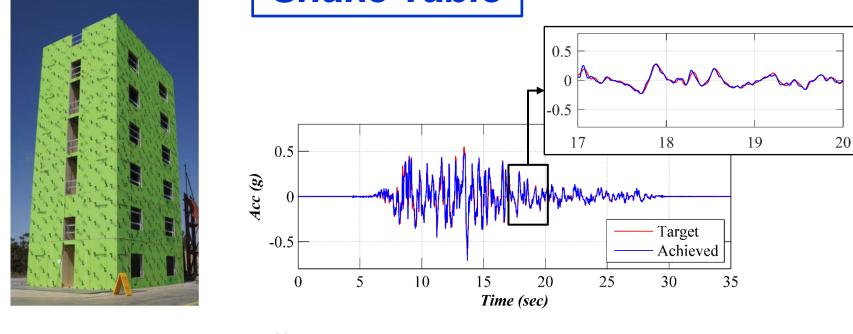

MTS Three-Variable Controller (TVC)

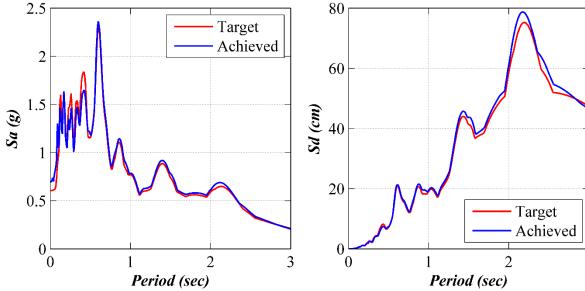
- MTS Controller Model 469D used on all large shake tables manufactured by MTS worldwide.
- TVC is a linear state variable controller. The three state variables controlled by TVC are:
 - Displacement
 - Velocity
 - Acceleration

TVC can be set to run under displacement, velocity or acceleration mode.


- TVC has special features to compensate for dynamic linear/nonlinear sources of signal distortions within the system for both harmonic and broadband command signals:
 - Amplitude/phase control (APC)
 - Adaptive harmonic cancellation (AHC)
 - Adaptive inverse control (AIC)
 - On-line iteration (OLI): Iterative signal matching technique
 - Notch filters
- Depending on the control mode, only one state variable becomes the primary control variable with the others serving only as compensation signals to improve the damping and stability of the system.


MTS Three-Variable Controller (TVC)


Tuning of LHPOST Controller (MTS 469D)


- **Tuning:** Process of adjusting multiple control parameters (e.g., feedback and feedforward gains) and of preconditioning the input motion (through OLI) to optimize signal reproduction (tracking) capability of the shake table system.
- Step 1: Iterative process in which the control parameters of the controller are manually adjusted iteratively in small increments while the (bare or loaded) table is in motion, until the total table transfer function (estimated recursively) is deemed satisfactory.
- **Step 2:** Estimation of the inverse model of the plant using the adaptive inverse controller (AIC) technique.
- Step 3: Application of iterative time history matching technique called online iteration (OLI). The command input to the shake table controller (drive file) is repeatedly modified to optimize the match between the actual table motion and the desired/target motion (or reference signal).

Tracking Performance of NHERI@UC San Diego
Shake Table

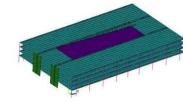
1994 Northridge Earthquake Canoga Park (comp. 196) Amplitude scaling: 1.55

Instrumentation for LHPOST

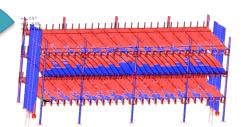
- Data Acquisition
 - 12 DAQ nodes with 64 channels each sampling up to
 25.6 kS/sec per channel with 24-bit A/D resolution
- 205 MEMS-based Accelerometers
- 142 Linear **Displacement Transducers**
- 119 String Potentiometer Displacement Transducers
- Strain Gages purchased per project as needed
- 4 Load Jacks
- 31 Load Cells (0 20,000 lbs)
- 32 Soil Pressure Transducers
- GPS System with RTD_NET Software by Geodetics with 3 Receivers Operating at 50 Hz
- High-Speed Cameras
 - 15 GoPros 4K, 4 Axis 240Q/241Q video servers streaming, 3 IQeye streaming/time lapse video (all at 30 fps)
- Fully Configured, End-to-End, Live Video Streaming Production System
 - NHERI@UC San Diego is on social media (youtube, facebook, twitter)
- Calibration Equipment for Data Acquisition Systems and Sensors

Select Set of Specimens tested on the LHPOST

Integrated Experimental-Analytical Approach


Experimental Research

- Materials
- Structural components
- Structural systems


Design Provisions and Assessment Methods

- Development
- Verification through numerical simulation

Computational Simulation

- Model development
- Model calibration
- Model validation

8-STORY OFFICE BUILDING

4-STORY PARKING STRUCTURE

AMERICAN SOCIETY OF CIVIL ENGINEERS

ASCE 7-16 SSC MAIN COMMITTEE BALLOT 5

VOTERS COMMENTS - VOTING MEMBERS

BALLOT CLOSING: MARCH 2015

BALLOT ITEM 4
APPROVE NEW PROPOSAL TC-02 CH12-036R01 BY GHOSH

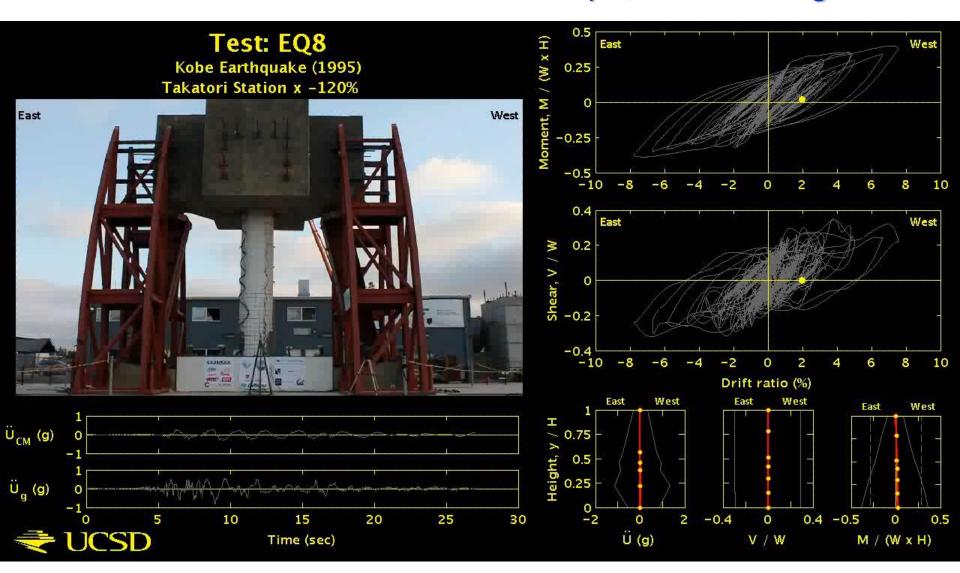
SEISMIC RESILIENT BUILT ENVIRONMENT

Development of a Seismic Design Methodology for Precast Building Diaphragms

PI - Prof. Robert B. Fleischman, University of Arizona

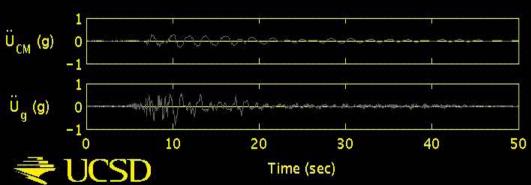
Inertial Force – Limiting Anchorage Systems for Seismic Resistant Building Structures

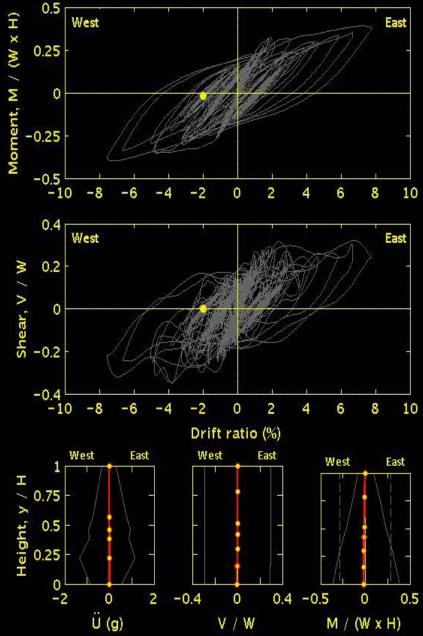
PI - Prof. Robert B. Fleischman, University of Arizona



Large Scale Validation of Seismic Performance of Bridge Columns

PI - Prof. Jose I. Restrepo, UC San Diego




Test: EQ8

Kobe Earthquake (1995)

Takatori Station x -120%

Use of LHPOST in Combination with Large Soil Boxes

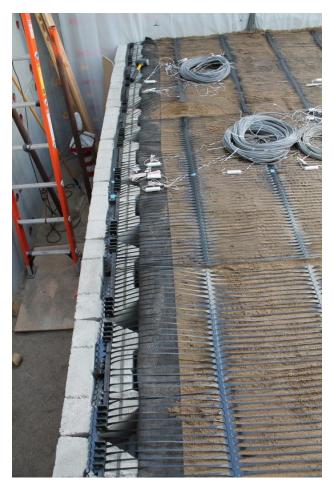
Laminar soil shear box: 6.7m (L) × 3.0m (W) × 4.7m (H)

Stiff soil confinement box: 10.0m (L) × 4.6 or 5.8m (W) × 7.6m (H)

- To investigate the seismic response of soil-foundation-structural systems
- To complement centrifuge tests in order to validate computational models
- To study the performance of bridge abutments, earth retaining walls, slope stability in hillside construction, and underground structures
- To investigate soil liquefaction and its effect on the seismic response of soilfoundation-structural systems

Experimental Program to Investigate Soil-Pile Interaction in Soil Strata

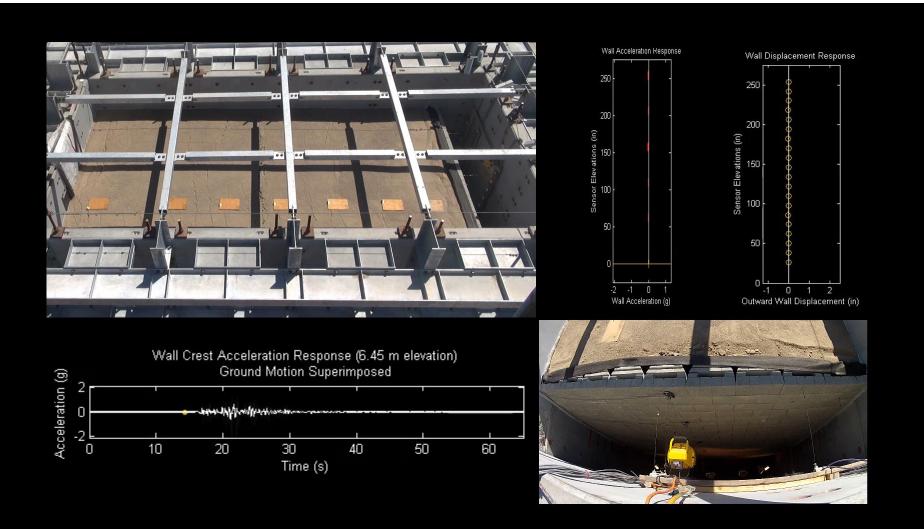
PI – Prof. Ahmed Elgamal, UC San Diego



Liquefaction-Induced Lateral Spread Displacements and Soil-Pile Interaction in Multi-Layer Soil Strata PI – Prof. Ahmed Elgamal, UC San Diego

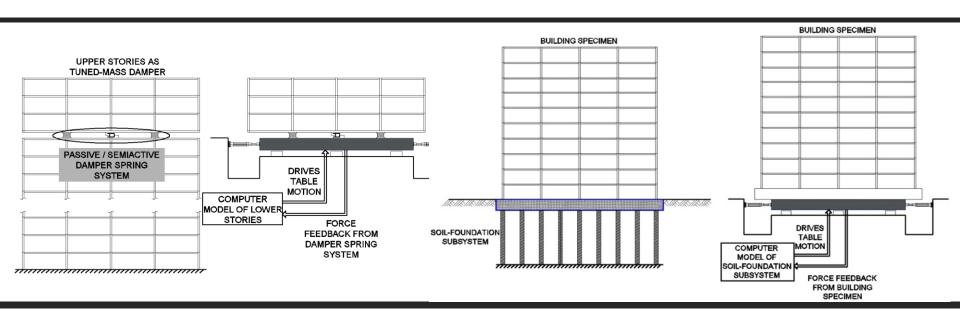
Seismic Performance Tests of Full-Scale Retaining Walls

PI – Prof. Patrick Fox UCSD



22 ft Above Table Elevation

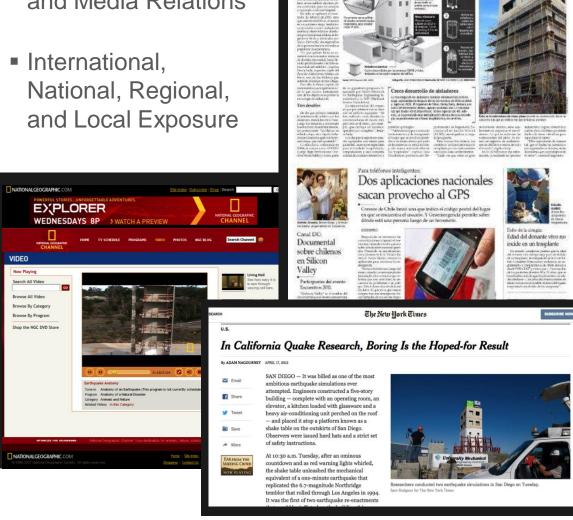
Earthquake Performance of Full-Scale Reinforced Soil Walls PI – Prof. Patrick Fox UCSD



Staging Facility

Hybrid Shake Table Testing

- > Basic hardware and software in place for real-time hybrid shake-table testing:
 - Multi-channel MTS FlexTest controller
 - SCRAMNet ring for real-time communication and synchronization of data flow between shake-table controller, FlexTest controller, and real-time target PC running the Matlab/SIMULINK Real-time Workshop and xPC Target software
 - Easy integration of OpenSees/OpenFresco open-source software framework
 - 50-tonf (110 kips) dynamic actuator
 - Portable hydraulic power system

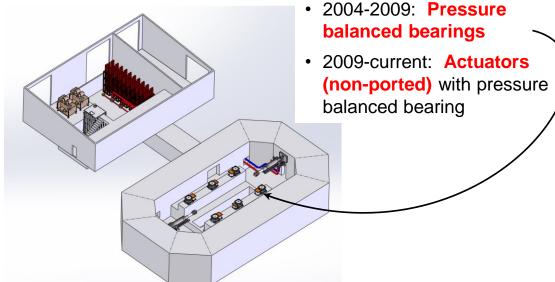


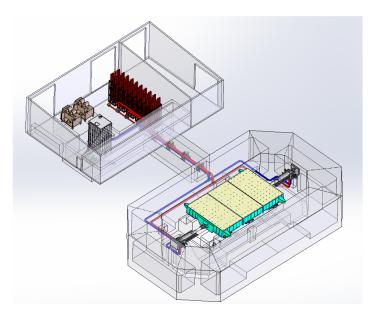
Broad Public Dissemination

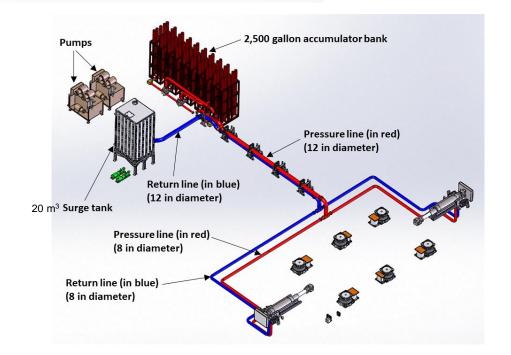
Recrearán en EE.UU. el terremoto del 27-F en un edificio experimental de cinco pisos

Así es la mesa vibradora que replica sismo

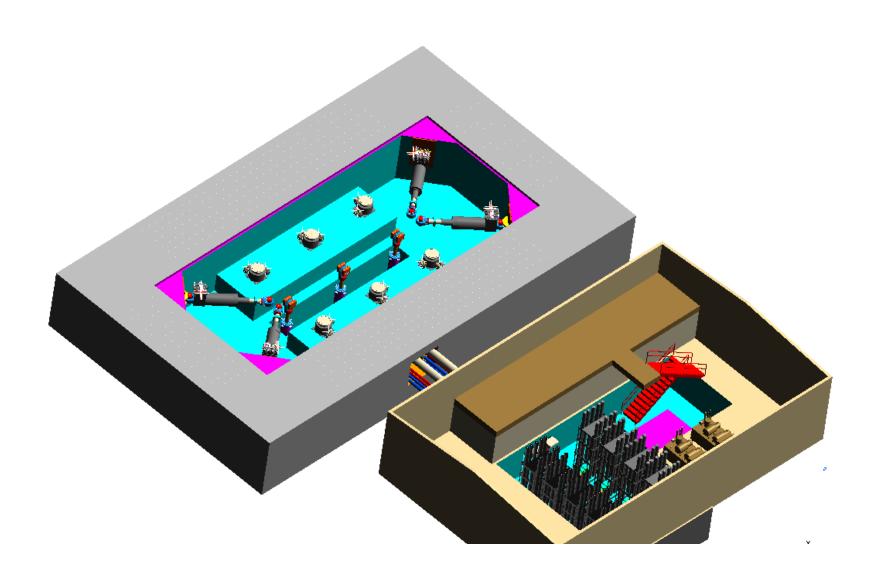
 Jacobs School of Engineering Communications and Media Relations

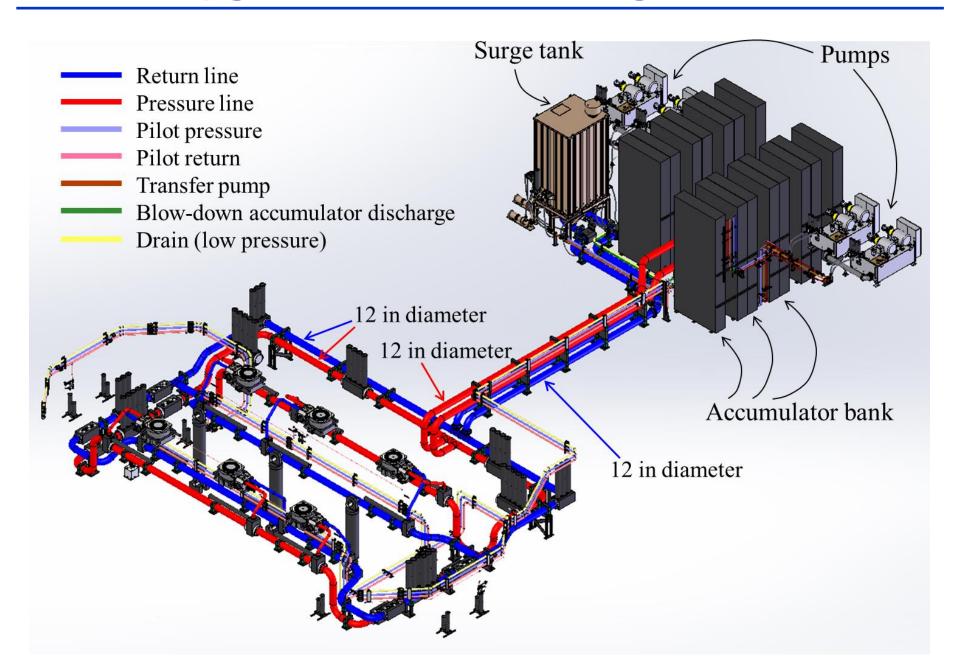




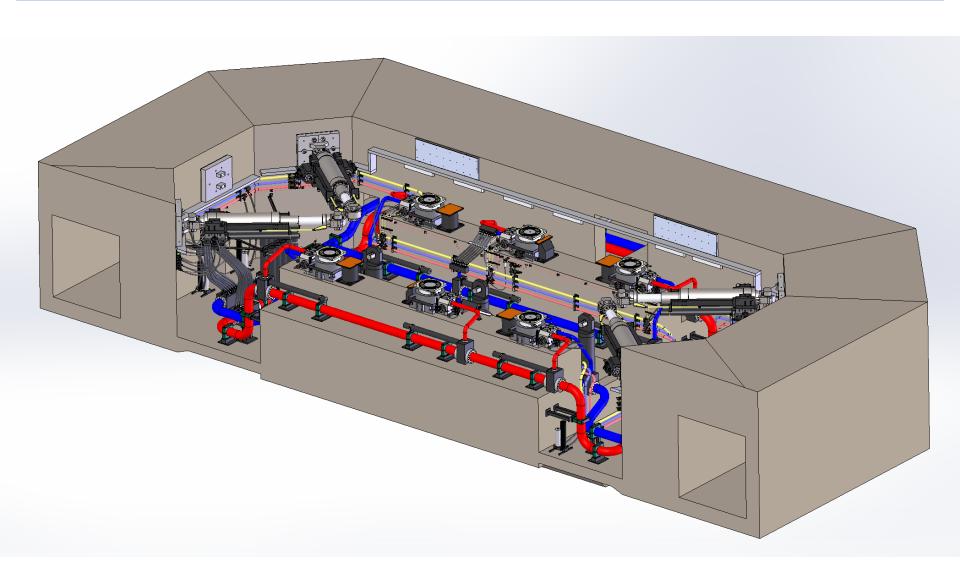

Six Degree-of-Freedom (6-DOF) Upgrade of LHPOST into LHPOST6

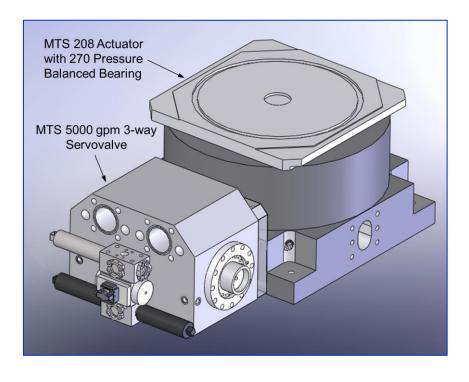
Hydraulic Power System for 1-DOF LHPOST

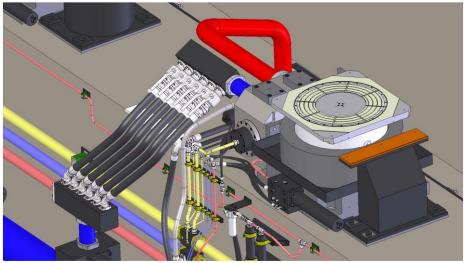




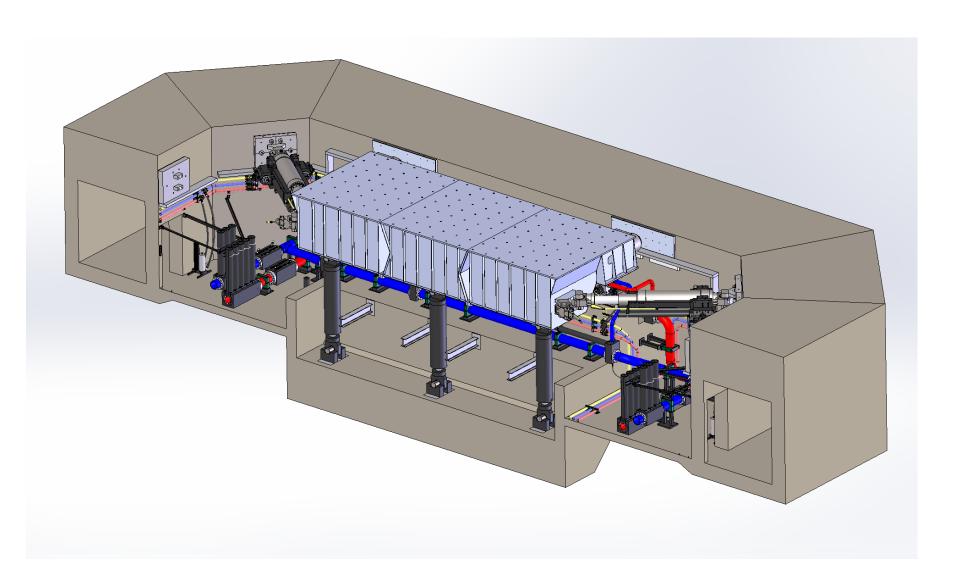
Upgrade to 6-DOF Configuration


Upgrade to 6-DOF Configuration

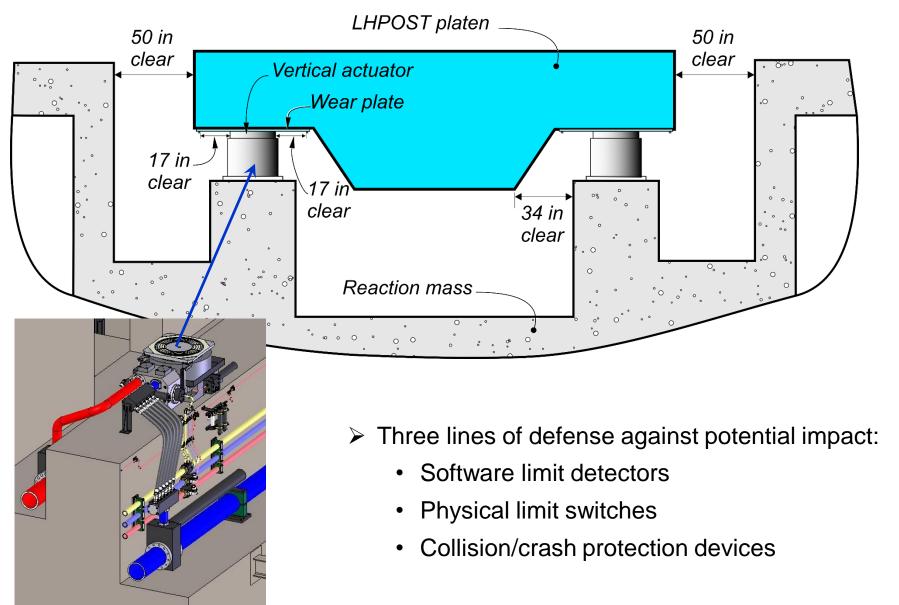

Accumulator Bank of LHPOST6

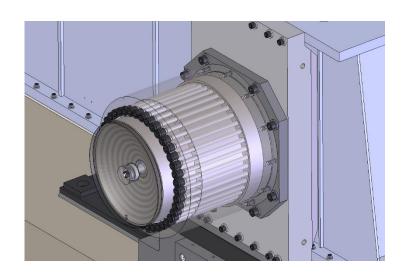


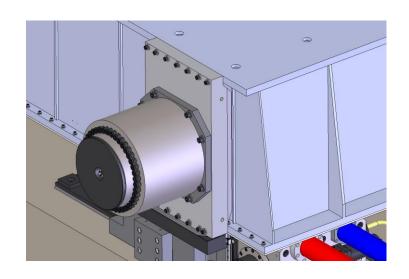
Horizontal and Vertical Actuators of LHPOST6

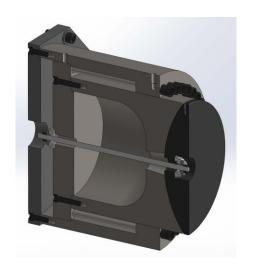


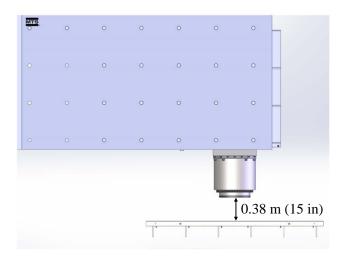
High-flow Servovalves for Vertical Actuators

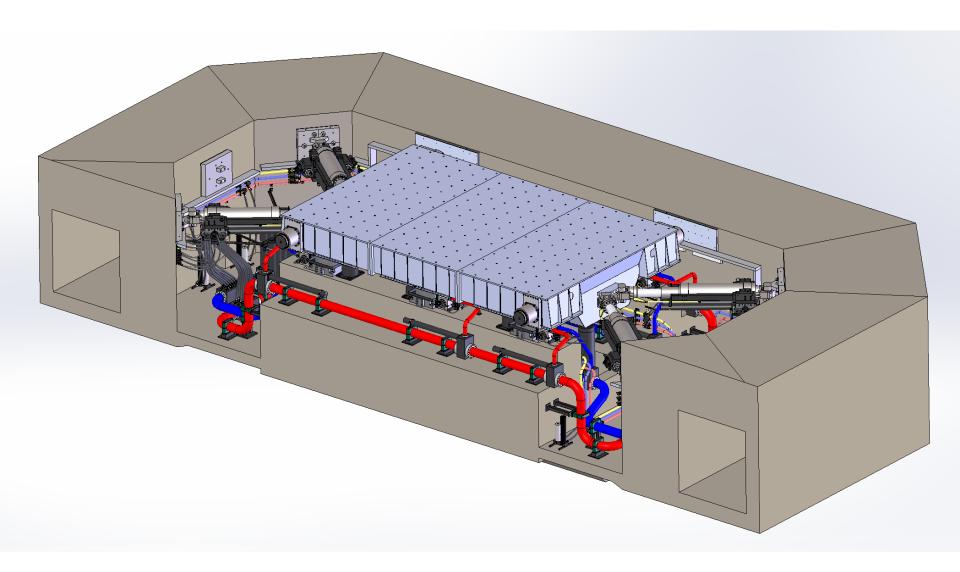



Third Nitrogen-filled Hold-down Strut




Displacement Limit in the Transverse (N-S) Direction


Crash Protection System



LHPOST6

Performance Characteristics of LHPOST6

Platen size	12	12.2 m × 7.6 m (40 ft × 25 ft)			
Frequency Bandwidth	0 – 33 Hz				
Vertical Payload Capacity	20 MN (4,500 kip)				
	•	Horizontal X	Horizontal Y	Vertical Z	
Peak Translational Displacement		±0.89 m (±35 in)	±0.38 m (±15 in)	±0.127 m (±5 in)	
Peak Translational Velocity		2.5 m/sec (100 in/sec)	2.0 m/sec (80 in/sec)	0.6 m/sec (25 in/sec)	
Peak Translational Force*		10.6 MN (2,380 kip)	8.38 MN (1,890 kip)	54.8 MN** (12,300 kip)	
Peak Rotation*		2.2 deg	1.5 deg	4.0 deg	
Peak Rotational Velocity*		21.0 deg/sec	12.4 deg/sec	40.5 deg/sec	
Peak Moment*		37.2 MN-m (27,400 kip-ft)	49.0 MN-m (36,200 kip-ft)	47.0 MN-m (34,600 kip-ft)	
Overturning Moment Capacity		45.1 MN-m (33,200 kip-ft)	50.0 MN-m (36,900 kip-ft)	Table I	

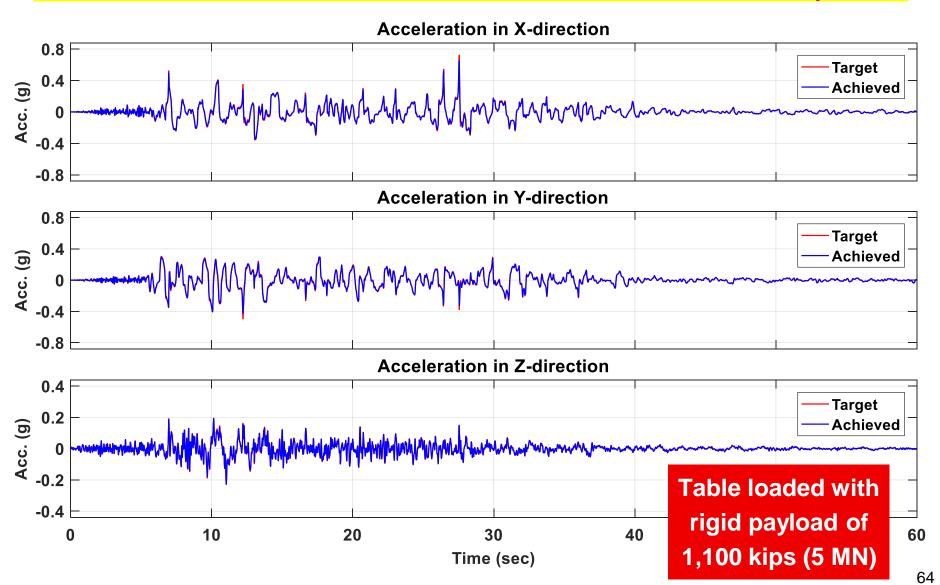
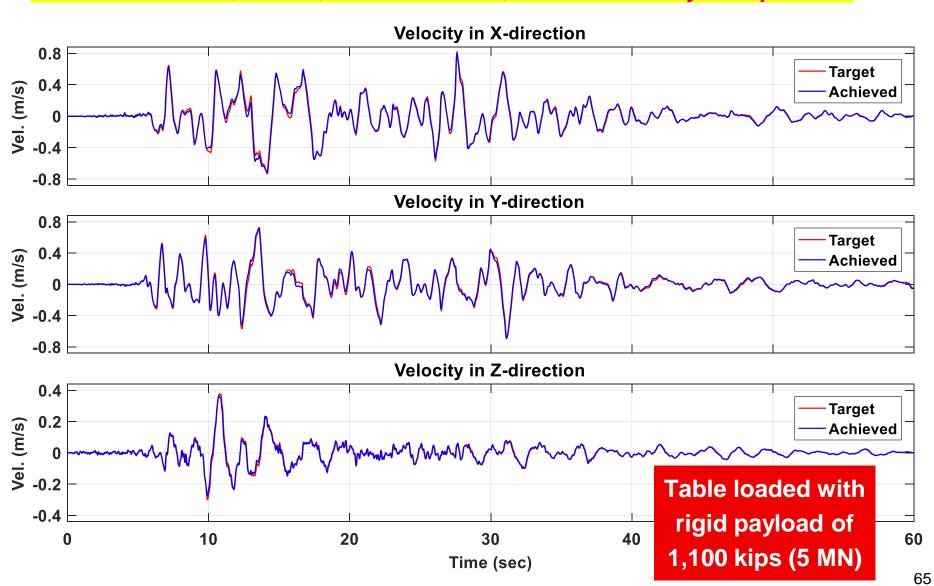
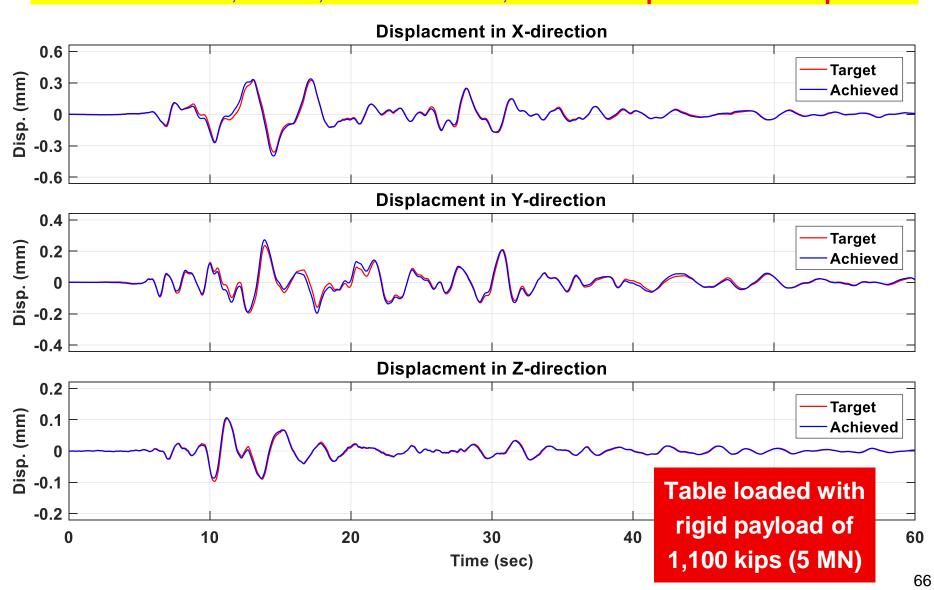

^{*} peak demand obtained during sinusoidal motions

Table loaded with rigid payload of 1,100 kips (5 MN)

^{**} peak compressive force in the compression-only vertical actuators

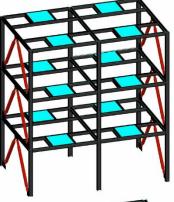

Target vs. Achieved (predicted using shake table model) Tri-Axial Ground Motions

1999 M7.6 Chi-Chi, Taiwan, TCU065 Station, Ground Acceleration Components

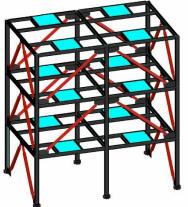

Target vs. Achieved (predicted using Shake Table Model) Tri-Axial Ground Motions

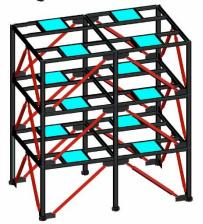
1999 M7.6 Chi-Chi, Taiwan, TCU065 Station, Ground Velocity Components

Target vs. Achieved (predicted using Shake Table Model) Tri-Axial Ground Motions


1999 M7.6 Chi-Chi, Taiwan, TCU065 Station, Ground Displacement Components

Modular Testbed Building


- Community-available building for NHERI users
 - Presently in design phase; materials procured
 - First structure to be tested on newly upgraded MDOF LHPOST


L = 32 ft W = 20 ftH = 36 ft

• Evolution:

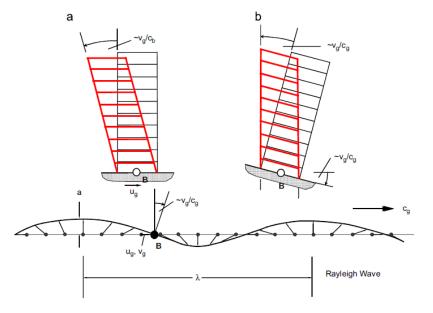
- Multi-university collaboration (University of Utah & UCSD)
- Close collaboration with industry partners (SMS steel & BRB manufacturer CoreBrace)
- Community input (via NHERI workshops)
- <u>Unique features:</u> Designed to be reconfigurable & reusable enabling low-cost testing of components and systems under simulated dynamic 3D loading
- <u>Potential uses:</u> Seismic protective systems, lateral force resisting systems, nonstructural systems and payload opportunities



Design Features

Reconfigurable 3-D full-scale three-story steel building designed to accommodate wide range of seismic behavior of buildings:

- Moment frame behavior with shear fuse type plastic hinges
- Braced frame behavior with buckling restrained braces (BRBs) at the built-in gusset plates at joints



Buckling restrained braces

Special moment frame joints (shear fuses)

New Research Opportunities Made Possible by the LHPOST6

- Investigate many important aspects of the seismic response behavior of civil infrastructure systems:
 - Effects of three-directional translational ground motions
 - Effects of rotational ground motion components
 - Effects of six-degree-of-freedom earthquake ground motions
- Investigate in full 3D and at large- or full-scale the combined effect of realistic near-field translational and rotational ground motions applied as dynamic excitation to a structural, geotechnical, or soil-foundation-structural system, including the effects of SSI (both kinematic and inertial), nonlinear soil and structural behavior, and soil liquefaction.

Geometric interpretation of how horizontal translation and rocking can contribute to the total drift in a simple building during passage of a Rayleigh wave [Trifunac, 2009]

- Understanding inherent damping in structures to settle the issue of which is the best damping model to be used in linear and nonlinear time history analyses.
 - Shake table experiments with 6-DOF seismic base excitation on largescale building specimens with and without non-structural components and systems and large-scale bridge sub-structures (e.g., bridge bents) will guide in the selection of appropriate inherent damping models.
- Experimental study of Dynamic Soil-Structure Interaction
 - Kinematic interaction of the foundation with the soil (in the absence of the superstructure)
 - Inertial interaction (resulting in additional rocking and torsional components of motion of the foundation)
- > Three general types of experimental SSI studies become possible:
 - Verification studies under three-axial or six-axial excitation
 - Hybrid tests
 - Large soil box studies under tri-axial or six-axial excitation

- Real-Time Hybrid Shaking Table Testing
 - Expand the complexity of large-scale structural, geotechnical and soilfoundation-structural systems that can be tested.
- > Seismic safety of unreinforced masonry buildings
 - URM walls subjected to uni-axial in-plane forces tend to exhibit a much better performance than under bi-axial seismic loading conditions (outof-plane collapse).
 - Vertical ground acceleration could also play an important role on the strength capacity (arching mechanism) and stability of URM walls.
- Seismic performance of reinforced concrete and reinforced masonry wall structures
 - Design provisions for RC and reinforced masonry shear walls are primarily based on in-plane horizontal loading tests of wall components.
 - Effects of simultaneous bi-horizontal and vertical ground excitation could play a significant role on the seismic performance of a building with RC or reinforced masonry walls.
 - Multi-axial shake table tests are needed to investigate this problem and to improve current design codes.

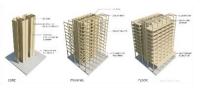
- Non-structural components and systems (NSCs).
 - Architectural, mechanical, electrical and plumbing, or building contents.
 - Improve our understanding of the seismic response of NCSs under multidirectional earthquake excitation.
 - Advance the development of a reliable, unified design methodology accounting for multi-directional earthquake excitation.
- Damage-free, maintenance-free earthquake protective systems (e.g., rocking, self-centering systems), accelerated bridge construction.
 - Investigate the response behavior of these high-performance systems (with complex kinematics) under multi-directional earthquake input excitation.

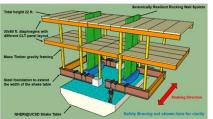
Collaborative Research: A Resilience-based Seismic Design Methodology for Tall Wood Buildings

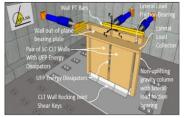
MEDERI PALLWOOD

Nheritallwood.mines.edu

spei@mines.edu

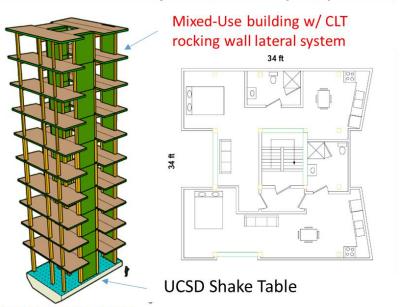






Define Tall Wood Archetypes

Investigative testing at system level



Two-story test at NHERI@UCSD 2017 Summer

Assembly test at NHERI@Lehigh 2019

Full-scale 10-story validation Test (2021)

Seismic R & D

(2018~2020)

For More Information about the NHERI@UC San Diego Experimental Facility

- https://ucsd.designsafe-ci.org
- Contact one of the NHERI@UC San Diego team member:
 - Joel Conte, <u>ipconte@ucsd.edu</u>
 - Tara Hutchinson, <u>tara@ucsd.edu</u>
 - Gilberto Mosqueda, gmosqueda@eng.ucsd.edu
 - Benson Shing, <u>pshing@ucsd.edu</u>
 - Lelli Van Den Einde, <u>lellivde@ucsd.edu</u>
 - Jose Restrepo, <u>irestrepo@ucsd.edu</u>
 - Koorosh Lotfizadeh, <u>klotfiza@ucsd.edu</u>

THE NHERI NETWORK IS SUPPORTED BY MULTIPLE GRANTS FROM THE NATIONAL SCIENCE FOUNDATION.

