Lifelines & Utilities: Natural Hazards Research

Joint Academia-Industry NHERI@UC San Diego Workshop University of California, San Diego 19 May 2023

Brad P. Wham, Ph.D. **Research Assistant Professor** Center for Infrastructure, Energy, and Space Testing (CIEST) Civil, Environmental, and Architectural Engineering (CEAE) University of Colorado Boulder

Center for Infrastructure, Energy, and Space Testing NIVERSITY OF COLORADO BOULDER

Lifelines & Utilities

Brad. P. Wham PhD

Lifeline Damage and Assessment for Natural Hazards Outline

- Lifelines Overview
- 2023 Turkey Earthquake
 - Interdependencies
 - Non-structural components
 - SSI
 - Fault offset Tunnel
- Testing Facilities
- Research Progressions

Center for Infrastructure, Energy, and Space Testing

Lifelines & Utilities

Brad. P. Wham PhD

Transportation

- Bridges, Tunnels, Roads, airports
- Water
 - Drinking Water Transmission/Distribution
 - Water and Wastewater Treatment Facilities
 - Water Towers & Storage
 - Dams
- Energy
 - Electrical Transmission, Distribution, and Substations
 - Coal and Gas Powerplants
 - Wind/ Solar/ Hydro Dams
 - LPG/Industrial Gas Facilities/ Petrol Stations
 - Natural Gas Transmission/Distribution
- Hospitals
- Evacuation Centers
- Emergency Service (fire, search/rescue)
- Industrial Facilities
- University Campuses

Center for Infrastructure, Energy, and Space Testing

Lifelines & Utilities |

| Brad. P. Wham PhD

NHERI@UCSD Workshop

Interdependencies

Soil-structure Interaction

Combined Hazards

Data/monitoring

Community Impact

Lifelines & Utilities

2023 Kahramanmaraş, Turkey Earthquake Sequence Water & Wastewater

Darende

Arıtaş

Malatya

Adıyaman

0-52

Suruç

Kobanî

غين العرب

M4

ake Assad

kçadağ

Besn

Nizip Birg

Jarabulus

حرابلس

Manbij

منبح

Gaski Water – Düzbağ Water Source (Turkey)

- Constructed starting 2016
- Supported by 21 km of power dist. Line (damaged)
- Water quality issues
- Transmission Pipeline (83 km)
 - 2.6m dia., 2.4mm thick steel (D/t=1080)
 - Air valve damage at 10 locations
 - Vault structure damage
 - Tunnel fault rupture
 - Fault rupture

| Brad. P. Wham PhD

Gaski Water – Düzbağ Water Source (Turkey)

Gaski Water – Düzbağ Water Source (Turkey)

Outline	References Seismic Design of Water Pipelines:
Demand	Davis, C.A., Rajah, S., Wham, B.P., & Heubach, W.F. (2019). "Stra Society of Civil Engineers (ASCE).
<u>Analytical</u> <u>Model</u>	 Wham, B.P. & Davis, C.A. (2019). Buried Continuous and Segmented Pipes Subjected to Longitudinal Permanent Ground Deformation. <i>ASCE Journal of Pipeline Systems Engineering and Practice</i>. <u>10.1061/(ASCE)PS.1949-1204.0000400</u>. Davis, C.A. & Wham, B.P. (2018) "Buried Hybrid-Segmented Pipes Subjected to Longitudinal Permanent Ground Deformation." <i>Proceedings</i>, 8th International Symposium on Earthquake Engineering for Lifelines and Critical Infrastructure Systems, Shenyang, China, October 17-19. Davis, C.A., Wham, B.P., Toshima, T., & Hara, T. (2019). "Evaluating Case Study Performance of Hybrid-Segmented Pipes to Longitudinal Permanent Ground Movement". <i>Proc., 2nd International Conference on Natural Hazards & Infrastructure.</i> Chania, Greece June 23-26. Banushi, G. & Wham, B.P. (2021). Deformation Capacity of Buried Hybrid-Segmented Pipelines under Longitudinal Permanent Ground Deformation. <i>Canadian Geotechnical Journal,</i> cgj-2020-0049. doi.org/10.1139/cgj-2020-0049.
<u>Soil-</u> <u>Structure</u> <u>Interaction</u>	 Wham, B.P., Berger, B.A., & Davis, C.A. (2019b). "Characterization of soil-structure interaction for seismic design of hazard-resistant pipeline systems". <i>Proc., 7th Int. Conf. Earthq. Geotech. Eng.</i> Roma, Italy. Wham, B.P., Berger, B.A., Pariya-Ekkasut, C., O'Rourke, T.D. (2018) "Hazard-resilient Pipeline Joint Soil-Structure Interaction under Large Axial Displacement." <i>Proceedings</i>: 5th Conference on Geotechnical Earthquake Engineering and Soil Dynamics, Austin, Texas, June 10-13. Wham, B.P., Pariya-Ekkasut, C., Argyrou, C., Lederman, A., O'Rourke, T. D., Stewart, H. (2017). "Experimental Characterization of Hazard-Resilient Ductile Iron Pipe Soil/Structure Interaction under Axial Displacement." <i>Proceedings</i>: ASCE Congress on Technical Advancement, Duluth, Minnesota, Sept. 11-13.
<u>Capacity</u>	 Wham, B.P., Davis, C.A., & Rajah, S. (2019a). "Axial Connection Force Capacity Required for Buried Pipelines Subjected to Seismic Permanent Ground Displacement". Proc., Pipelines 2019. Nashville: American Society of Civil Engineers (ASCE). Rose*, H.R., Wham, B.P., Dashti, S., & Liel, A.B. (2022). "Seismic-Resistant Pipeline Design: Parametric Study of Axial Connection Force Capacity". Proc., ASCE-UCLA San Fernando Lifelines Conference. Los Angeles: ASCE, Feb. 21-23.
<u>Testing</u>	 Wham, B.P., Berger, B.A., Pariya-Ekkasut, C., O'Rourke, T.D., Stewart, H.E., Bond, T.K. (2018) "Achieving Resilient Water Networks: Experimental Performance Evaluation." <i>Proceedings</i>, 11th U.S. National Conference on Earthquake Engineering, Los Angeles, California, June 25-29. Wham, B.P., Ihnotic*, C.R., Balcells*, D., & Anderson*, D.K. (2019). "Performance Assessment of Pipeline System Seismic Response". <i>Proc., JWWA/WRF/CTWWA Water System Seismic Conference</i>. Los Angeles, CA, October 9-10. Wham, B.P., Anderson*, D.K., & Ihnotic*, C.R. (2020). "Experimental Assessment of Pipeline Connection Response to Transverse Loading". <i>Proc., Pipelines 2020</i> (pp. 405–417). Reston, VA: American Society of Civil Engineers (ASCE). <u>10.1061/9780784483190.045</u>. Wham, B.P., N. Berty*, N., Ihnotic, C., "Experimental Seismic Assessment of Water Distribution Pipelines: Axial Cyclic Testing". <i>Proc., 12th National Conference on Earthquake Engineering</i>, Salt Lake City, UT, 27 June to 1 July 2022 (<i>Under review</i>).
<u>Application</u>	Berty*, N., Wham, B.P., Ihnotic, C.R., Ramos*, J.L., Rose*, H.R. (2022) "Seismic Performance Classification of Hazard Resilient iPVC Pipeline Systems". Proc., ASCE/UESI Pipelines, Indianapolis, IN. (Accepted).
Center for UNIVERSITY	Infrastructure, Energy, and Space Testing OF COLORADO BOULDER Lifelines & Utilities Brad. P. Wham PhD NHERI@UCSD Workshop

Research Opportunities

Center for Infrastructure, Energy, and Space Testing UNIVERSITY OF COLORADO BOULDER

Lifelines & Utilities

Brad. P. Wham PhD

NHERI@UCSD Workshop

16

Testing and analysis of pipeline rehabilitation technologies

- need for innovative repair techniques for aging pipeline systems is illustrated by DOE/ARPA-E \$38m Rapid Encapsulated of Pipelines Avoiding Intensive Replacement (REPAIR) project for the natural gas industry.
- developing a suite of physical tests and numerical models which is assessing structural performance of new products over a 50year design life, with hazard resilience as a next step.
- The procedures and methods are fueling research advancements that will provide benefits across the utility sectors and serve as a reoccurring research opportunity as systems move through the regulatory process (e.g., PHMSA grants)

Hazard-resilient & Adaptive Lifeline Systems: Design and Assessment

- ASCE MOP on <u>Seismic Design</u> of Water and Wastewater Pipelines: has identified several needed research directions to improve seismic design procedures.
 - need for quantifying the performance of new and existing systems to various levels of ground movement
 - Design tools for Seismic Regions SSI, geometric features, thrust restraint, service connections, etc.
 - <u>Testing standard for seismic qualification</u>: new ASCE standard committee to develop a testing standard for pipelines in seismic regions. Once accepted, the standard will be incorporated into municipality bid documents
- <u>Experimental evaluation of hazard-resilient pipelines</u>: quantify and validate new hazard-resistant lifeline technologies for use in hazard-prone regions.
 - this research opportunity, in addition to others, lends itself particularly well to <u>hybrid testing</u>

Center fo

Center for Infrastructure, Energy, and Space Testing UNIVERSITY OF COLORADO BOULDER

Lifelines & Utilities | Brad. P. Wham PhD

Hazard-resilient & Adaptive Lifeline Systems: Soilstructure interaction

- <u>Hazard-resistant pipeline soil-structure interaction</u>: hazard-resilient pipelines require larger mechanical components along the pipe to accommodate ground deformation.
 - Incorporating couplings/valves/blowoffs/etc in the ground during relative movement between pipe and soil, and significantly increase the demand on the connections and structure
 - experimental assessment to provide inputs to develop simplified analytical estimates for immediate design needs, as well as the basis for 3D continuum modeling approaches to investigate vertical/horizontal bearing capacity and progressive shear plane development
- <u>Statistical assessment of pipeline response and earthquake-induced ground movement magnitude</u>:
 - statistical characterization of expected permanent ground movements associated with seismically-induced landslides and lateral spreading; as well as human-induced deformations
 - Monitoring and data collection before and after events

Ground Movement

Sources

- Urban Construction
 - Tunneling
 - Deep excavations
 - Subsidence from dewatering and mining activities
- Flooding/ Extreme Weather
 - Freeze/thaw
 - Scour and undermining
 - Landslides/ground failure
- Expansive soils
- Earthquake
 - Fault rupture
 - Soil liquefaction
 - Lateral spreading
 - Landslides

Center for Infrastructure, Energy, and Space Testing UNIVERSITY OF COLORADO **BOULDER**

Lifelines & Utilities

| Brad. P. Wham PhD

NHERI@UCSD Workshop

Tunnel

(Wham, et al., 2017)

DOE/ARPA-E REPAIR

External Loading Tests: Lateral Deformation

Task	Hardware	Sub-Task	
T4. External load testing (all	nal T4.1. Four-point bending frames to be d to [POs 1, 2, 3] men es)	 T4.1.1. Vibration/traffic loads (<i>PO1</i>) [500,000 cycles] For compliant pipe linings spanning weak joints, the imposed vertical displacement was about 0.08 in. 	CI Joint Round Crack CI Main Flexure Stewart et al., 2015
external loads to be applied to each specimen in series)		T4.1.2. Deflection (lateral deformation) (<i>PO2</i>) [Large defl. + 100,000 cy.] - For compliant pipe linings spanning weak joints, the imposed vertical displacement ~0.20 in	klingaman et al., 2022

*FM3: cross-sectional ovalization to be monitored/assessed during lateral load application

DOE/ARPA-E REPAIR

External Loading Tests: Axial Deformation

ASCE MOP: Demand vs. Capacity

ISO 16134: Earthquake- and subsidence-resistant design of ductile iron pipe (Japanese Standard)

	Types of joir	1ts.	K-j	oint	A-j	oint	Fla	nge: nt†.	4			
Sp	ecimen serial n	umber.		1		1	1.10.				Davis, et al.	, 2019
Items	Seismic classification.	Range	1.	2.0	1.	2.	1.0	20) Class $\alpha_A = 0.01\%$ up t	Seismic S o 0.1%	train Demand	
Expansion	S-1.	δ≥1%L∘	V.	No	o	ø	a	a	$\begin{array}{c c} \alpha_{\rm B} & 0.1\% \text{ up to} \\ \hline \alpha_{\rm C} & 0.5\% \text{ up to} \end{array}$	0.5% 1%		
capacity+	S-2.	0.5%L≤δ<1%L≠	÷	د	÷	ø	4	÷	$\alpha_{\rm D}$ 1% or grea $\rho_{\rm A}$ R _A > 344m	ter (1130 ft)	$\phi_{A}/L_{a} < 0.167 \text{ deg./m}$	(0.051
δ(mm).	S-3+	δ<0.5%L.	e	÷	No	No	4		le 115 m (376	$(5 \text{ ft}) < R_P < 344 \text{m}$	deg./ft	eg /m
Contraction	S-1.	δ≥1%L≠	×.	: e.	.e.	:e.:		6	(1130 ft)	$(\mathbf{R}) < \mathbf{R} \leq 115 \text{ m}$	(0.152 deg./ft)	eg./m
capacity.	S-2.	0.5%L≤δ<1%L≠	5	. e	e.	÷.	.e	æ.	$\rho_{\rm C}$ 46 m (150 (376 ft)	$(1) < R_C \le 115 \text{ m}$	$0.5 \le \varphi_C/L_g < 1.25 \deg$ deg./ft)	g./m (0.381
δ(mm).	S-3.	δ<0.5%L	No	$\sqrt{2}$	No	No	÷.	a.	$\rho_D R_D \le 46 \text{ m}$	(150 ft)	$\phi_D/L_g \ge 1.25 \text{ deg./m} (0 \text{ deg./ft})$	0.381
Slip-out	Ae	F≥3d∞	ø	ø	֯.	÷	ø	φ.				U
resistance	B.	1.5d≤F<3d₀ 0.75d <f<1.5d₀< td=""><td>0</td><td>0</td><td>0</td><td>0 0</td><td>4) (4)</td><td>0</td><td>Daufaumanaa</td><td>150 16134</td><td>ISO 16134</td><td>ISO DIP</td></f<1.5d₀<>	0	0	0	0 0	4) (4)	0	Daufaumanaa	150 16134	ISO 16134	ISO DIP
F(KN)-	D.	F<0.75de	No	No	No	No	$\sqrt{*}_{\phi}$	$\sqrt{\eta_{e}}$	Class	(kN)	(US units)	$\mathbf{D} = 6$ in.
Rotation	M-1.0	Ø≥15%	2	e	:	:e.:	÷	ø.		1 1 0 750	(мрз)	(kips)
deflection	M-2.4	7.5°≤θ<15°₊	No	No		540	\$			less than 0.75D	less than 4.3D	< 25.7
θ(deg).	M-3.	θ<7 .5°,	3	5	No	No	No	Vo		0.75D to 1.5D	4.3D to 8.6D	25.7
L: nominal	pipe length (mi	n);-			1.05	1.0476		1. 192	Φ Φ	1.5D to 3L	8.6D to 17.1D	51.4 102.8
d: nominal p	oipe diameter (mm);↓		** F					D			102.0
*: tensile str	ength at which	water pressure wa	as lo	st	anur	e,+	1	SO,		100		1
	Infrastructure, E	nergy, and Space T DULDER	estin	ıg					PhD	NHERI	@UCSD Workshop	31

Seismic Design	n: Gro	ound Deformation	Demands		
					Pipeline subject to tension and bending
Parameter (+ and -)	Class	Seismic S	train Demand		A. S.
Axial Strain (α)	αA	0.01% up to 0.1%			Pipeline subject to
	α _B	0.1% up to 0.5%			compression and bending
1	α _C	0.5% up to 1%		_ I	Parallel Crossing
	αD	1% or greater			
Radius of Curvature (R)/ Deflection Angle	ρΑ	$R_A > 344m (1130 ft)$	$\phi_A/L_g < 0.167 \text{ deg./m} (0.051 \text{ deg./ft})$		Dinalina subject
(φ)	рв	$\frac{115 \text{ m} (376 \text{ ft}) < R_B \le 344 \text{m}}{(1130 \text{ ft})}$	$0.167 \le \phi_B/L_g < 0.5 \text{ deg./m}$ (0.152 deg./ft)		mainly to bending
	рс	$\begin{array}{l} 46 \ m \ (150 \ ft) < R_C \leq 115 \ m \\ (376 \ ft) \end{array}$	$0.5 \le \phi_C/L_g < 1.25 \text{ deg./m} (0.381 \text{ deg./ft})$	K	
	ρ _D	$R_D \le 46 \text{ m} (150 \text{ ft})$			K W
Davis et al. 2019		Continuous Pipe (radius of curvature)	Segmented Pipe (deflection angle)	 -	ernendicular Crossing
Center for Infrastructure, E UNIVERSITY OF COLORADO BO	nergy, and DULDER	Space Testing Lifelin	es & Utilities Brad. P. Wham	PhD	NHERI@UCSD Workshop 32

Outline	References Connection Force Capacity Overview
<u>Demand</u>	Davis, C.A., Rajah, S., Wham, B.P., & Heubach, W.F. (2019). "Strain Demands on Buried Pipelines from Earthquake-Induced Ground Movements". Proc., Pipelines 2019. Nashville: American Society of Civil Engineers (ASCE).
<u>Analytical</u> <u>Model</u>	 Wham, B.P. & Davis, C.A. (2019). Buried Continuous and Segmented Pipes Subjected to Longitudinal Permanent Ground Deformation. <i>ASCE Journal of Pipeline Systems Engineering and Practice</i>. <u>10.1061/(ASCE)PS.1949-1204.0000400</u>. Davis, C.A. & Wham, B.P. (2018) "Buried Hybrid-Segmented Pipes Subjected to Longitudinal Permanent Ground Deformation." <i>Proceedings</i>, 8th International Symposium on Earthquake Engineering for Lifelines and Critical Infrastructure Systems, Shenyang, China, October 17-19. Davis, C.A., Wham, B.P., Toshima, T., & Hara, T. (2019). "Evaluating Case Study Performance of Hybrid-Segmented Pipes to Longitudinal Permanent Ground Movement". <i>Proc., 2nd International Conference on Natural Hazards & Infrastructure.</i> Chania, Greece June 23-26. Banushi, G. & Wham, B.P. (2021). Deformation Capacity of Buried Hybrid-Segmented Pipelines under Longitudinal Permanent Ground Deformation. <i>Canadian Geotechnical Journal,</i> cgj-2020-0049. doi.org/10.1139/cgj-2020-0049.
<u>Soil-</u> <u>Structure</u> <u>Interaction</u>	 Wham, B.P., Berger, B.A., & Davis, C.A. (2019b). "Characterization of soil-structure interaction for seismic design of hazard-resistant pipeline systems". <i>Proc., 7th Int. Conf. Earthq. Geotech. Eng.</i> Roma, Italy. Wham, B.P., Berger, B.A., Pariya-Ekkasut, C., O'Rourke, T.D. (2018) "Hazard-resilient Pipeline Joint Soil-Structure Interaction under Large Axial Displacement." <i>Proceedings</i>: 5th Conference on Geotechnical Earthquake Engineering and Soil Dynamics, Austin, Texas, June 10-13. Wham, B.P., Pariya-Ekkasut, C., Argyrou, C., Lederman, A., O'Rourke, T. D., Stewart, H. (2017). "Experimental Characterization of Hazard-Resilient Ductile Iron Pipe Soil/Structure Interaction under Axial Displacement." <i>Proceedings</i>: ASCE Congress on Technical Advancement, Duluth, Minnesota, Sept. 11-13.
<u>Capacity</u>	 Wham, B.P., Davis, C.A., & Rajah, S. (2019a). "Axial Connection Force Capacity Required for Buried Pipelines Subjected to Seismic Permanent Ground Displacement". Proc., Pipelines 2019. Nashville: American Society of Civil Engineers (ASCE). Rose*, H.R., Wham, B.P., Dashti, S., & Liel, A.B. (2022). "Seismic-Resistant Pipeline Design: Parametric Study of Axial Connection Force Capacity". Proc., ASCE-UCLA San Fernando Lifelines Conference. Los Angeles: ASCE, Feb. 21-23.
<u>Testing</u>	 Wham, B.P., Berger, B.A., Pariya-Ekkasut, C., O'Rourke, T.D., Stewart, H.E., Bond, T.K. (2018) "Achieving Resilient Water Networks: Experimental Performance Evaluation." <i>Proceedings</i>, 11th U.S. National Conference on Earthquake Engineering, Los Angeles, California, June 25-29. Wham, B.P., Ihnotic*, C.R., Balcells*, D., & Anderson*, D.K. (2019). "Performance Assessment of Pipeline System Seismic Response". <i>Proc., JWWA/WRF/CTWWA Water System Seismic Conference</i>. Los Angeles, CA, October 9-10. Wham, B.P., Anderson*, D.K., & Ihnotic*, C.R. (2020). "Experimental Assessment of Pipeline Connection Response to Transverse Loading". <i>Proc., Pipelines 2020</i> (pp. 405–417). Reston, VA: American Society of Civil Engineers (ASCE). <u>10.1061/9780784483190.045</u>. Wham, B.P., N. Berty*, N., Ihnotic, C., "Experimental Seismic Assessment of Water Distribution Pipelines: Axial Cyclic Testing". <i>Proc., 12th National Conference on Earthquake Engineering</i>, Salt Lake City, UT, 27 June to 1 July 2022 (<i>Under review</i>).
Application	Berty*, N., Wham, B.P., Ihnotic, C.R., Ramos*, J.L., Rose*, H.R. (2022) "Seismic Performance Classification of Hazard Resilient iPVC Pipeline Systems". Proc., ASCE/UESI Pipelines, Indianapolis, IN. (Accepted).
	rastructure, Energy, and Space Testing COLORADO BOULDER Lifelines & Utilities Brad. P. Wham PhD NHERI@UCSD Workshop 33

2018 Hokkaido Earthquake and Typhoon GEER Reconnaissance

Outline	References Connection Force Capacity Overview
Demand	Davis, C.A., Rajah, S., Wham, B.P., & Heubach, W.F. (2019). "Strain Demands on Buried Pipelines from Earthquake-Induced Ground Movements". Proc., Pipelines 2019. Nashville: American Society of Civil Engineers (ASCE).
<u>Analytical</u> <u>Model</u>	 Wham, B.P. & Davis, C.A. (2019). Buried Continuous and Segmented Pipes Subjected to Longitudinal Permanent Ground Deformation. <i>ASCE Journal of Pipeline Systems Engineering and Practice</i>. <u>10.1061/(ASCE)PS.1949-1204.0000400</u>. Davis, C.A. & Wham, B.P. (2018) "Buried Hybrid-Segmented Pipes Subjected to Longitudinal Permanent Ground Deformation." <i>Proceedings</i>, 8th International Symposium on Earthquake Engineering for Lifelines and Critical Infrastructure Systems, Shenyang, China, October 17-19. Davis, C.A., Wham, B.P., Toshima, T., & Hara, T. (2019). "Evaluating Case Study Performance of Hybrid-Segmented Pipes to Longitudinal Permanent Ground Movement". <i>Proc., 2nd International Conference on Natural Hazards & Infrastructure.</i> Chania, Greece June 23-26. Banushi, G. & Wham, B.P. (2021). Deformation Capacity of Buried Hybrid-Segmented Pipelines under Longitudinal Permanent Ground Deformation. <i>Canadian Geotechnical Journal,</i> cgj-2020-0049. doi.org/10.1139/cgj-2020-0049.
<u>Soil-</u> <u>Structure</u> <u>Interaction</u>	 Wham, B.P., Berger, B.A., & Davis, C.A. (2019b). "Characterization of soil-structure interaction for seismic design of hazard-resistant pipeline systems". <i>Proc., 7th Int. Conf. Earthq. Geotech. Eng.</i> Roma, Italy. Wham, B.P., Berger, B.A., Pariya-Ekkasut, C., O'Rourke, T.D. (2018) "Hazard-resilient Pipeline Joint Soil-Structure Interaction under Large Axial Displacement." <i>Proceedings</i>: 5th Conference on Geotechnical Earthquake Engineering and Soil Dynamics, Austin, Texas, June 10-13. Wham, B.P., Pariya-Ekkasut, C., Argyrou, C., Lederman, A., O'Rourke, T. D., Stewart, H. (2017). "Experimental Characterization of Hazard-Resilient Ductile Iron Pipe Soil/Structure Interaction under Axial Displacement." <i>Proceedings</i>: ASCE Congress on Technical Advancement, Duluth, Minnesota, Sept. 11-13.
<u>Capacity</u>	 Wham, B.P., Davis, C.A., & Rajah, S. (2019a). "Axial Connection Force Capacity Required for Buried Pipelines Subjected to Seismic Permanent Ground Displacement". Proc., Pipelines 2019. Nashville: American Society of Civil Engineers (ASCE). Rose*, H.R., Wham, B.P., Dashti, S., & Liel, A.B. (2022). "Seismic-Resistant Pipeline Design: Parametric Study of Axial Connection Force Capacity". Proc., ASCE-UCLA San Fernando Lifelines Conference. Los Angeles: ASCE, Feb. 21-23.
<u>Testing</u>	 Wham, B.P., Berger, B.A., Pariya-Ekkasut, C., O'Rourke, T.D., Stewart, H.E., Bond, T.K. (2018) "Achieving Resilient Water Networks: Experimental Performance Evaluation." <i>Proceedings</i>, 11th U.S. National Conference on Earthquake Engineering, Los Angeles, California, June 25-29. Wham, B.P., Ihnotic*, C.R., Balcells*, D., & Anderson*, D.K. (2019). "Performance Assessment of Pipeline System Seismic Response". <i>Proc., JWWA/WRF/CTWWA Water System Seismic Conference</i>. Los Angeles, CA, October 9-10. Wham, B.P., Anderson*, D.K., & Ihnotic*, C.R. (2020). "Experimental Assessment of Pipeline Connection Response to Transverse Loading". <i>Proc., Pipelines 2020</i> (pp. 405–417). Reston, VA: American Society of Civil Engineers (ASCE). <u>10.1061/9780784483190.045</u>. Wham, B.P., N. Berty*, N., Ihnotic, C., "Experimental Seismic Assessment of Water Distribution Pipelines: Axial Cyclic Testing". <i>Proc., 12th National Conference on Earthquake Engineering</i>, Salt Lake City, UT, 27 June to 1 July 2022 (<i>Under review</i>).
Application	Berty*, N., Wham, B.P., Ihnotic, C.R., Ramos*, J.L., Rose*, H.R. (2022) "Seismic Performance Classification of Hazard Resilient iPVC Pipeline Systems". Proc., ASCE/UESI Pipelines, Indianapolis, IN. (Accepted).
Center for I UNIVERSITY	nfrastructure, Energy, and Space Testing OF COLORADO BOULDER Lifelines & Utilities Brad. P. Wham PhD NHERI@UCSD Workshop 37

Outline	References Connection Force Capacity Overview
Demand	Davis, C.A., Rajah, S., Wham, B.P., & Heubach, W.F. (2019). "Strain Demands on Buried Pipelines from Earthquake-Induced Ground Movements". Proc., Pipelines 2019. Nashville: American Society of Civil Engineers (ASCE).
<u>Analytical</u> <u>Model</u>	 Wham, B.P. & Davis, C.A. (2019). Buried Continuous and Segmented Pipes Subjected to Longitudinal Permanent Ground Deformation. <i>ASCE Journal of Pipeline Systems Engineering and Practice</i>. <u>10.1061/(ASCE)PS.1949-1204.0000400</u>. Davis, C.A. & Wham, B.P. (2018) "Buried Hybrid-Segmented Pipes Subjected to Longitudinal Permanent Ground Deformation." <i>Proceedings</i>, 8th International Symposium on Earthquake Engineering for Lifelines and Critical Infrastructure Systems, Shenyang, China, October 17-19. Davis, C.A., Wham, B.P., Toshima, T., & Hara, T. (2019). "Evaluating Case Study Performance of Hybrid-Segmented Pipes to Longitudinal Permanent Ground Movement". <i>Proc., 2nd International Conference on Natural Hazards & Infrastructure</i>. Chania, Greece June 23-26. Banushi, G. & Wham, B.P. (2021). Deformation Capacity of Buried Hybrid-Segmented Pipelines under Longitudinal Permanent Ground Deformation. <i>Canadian Geotechnical Journal</i>, cgj-2020-0049. doi.org/10.1139/cgj-2020-0049.
<u>Soil-</u> <u>Structure</u> <u>Interaction</u>	 Wham, B.P., Berger, B.A., & Davis, C.A. (2019b). "Characterization of soil-structure interaction for seismic design of hazard-resistant pipeline systems". <i>Proc., 7th Int. Conf. Earthq. Geotech. Eng.</i> Roma, Italy. Wham, B.P., Berger, B.A., Pariya-Ekkasut, C., O'Rourke, T.D. (2018) "Hazard-resilient Pipeline Joint Soil-Structure Interaction under Large Axial Displacement." <i>Proceedings</i>: 5th Conference on Geotechnical Earthquake Engineering and Soil Dynamics, Austin, Texas, June 10-13. Wham, B.P., Pariya-Ekkasut, C., Argyrou, C., Lederman, A., O'Rourke, T. D., Stewart, H. (2017). "Experimental Characterization of Hazard-Resilient Ductile Iron Pipe Soil/Structure Interaction under Axial Displacement." <i>Proceedings</i>: ASCE Congress on Technical Advancement, Duluth, Minnesota, Sept. 11-13.
<u>Capacity</u>	 Wham, B.P., Davis, C.A., & Rajah, S. (2019a). "Axial Connection Force Capacity Required for Buried Pipelines Subjected to Seismic Permanent Ground Displacement". Proc., Pipelines 2019. Nashville: American Society of Civil Engineers (ASCE). Rose*, H.R., Wham, B.P., Dashti, S., & Liel, A.B. (2022). "Seismic-Resistant Pipeline Design: Parametric Study of Axial Connection Force Capacity". Proc., ASCE-UCLA San Fernando Lifelines Conference. Los Angeles: ASCE, Feb. 21-23.
<u>Testing</u>	 Wham, B.P., Berger, B.A., Pariya-Ekkasut, C., O'Rourke, T.D., Stewart, H.E., Bond, T.K. (2018) "Achieving Resilient Water Networks: Experimental Performance Evaluation." <i>Proceedings</i>, 11th U.S. National Conference on Earthquake Engineering, Los Angeles, California, June 25-29. Wham, B.P., Ihnotic*, C.R., Balcells*, D., & Anderson*, D.K. (2019). "Performance Assessment of Pipeline System Seismic Response". <i>Proc., JWWA/WRF/CTWWA Water System Seismic Conference</i>. Los Angeles, CA, October 9-10. Wham, B.P., Anderson*, D.K., & Ihnotic*, C.R. (2020). "Experimental Assessment of Pipeline Connection Response to Transverse Loading". <i>Proc., Pipelines 2020</i> (pp. 405–417). Reston, VA: American Society of Civil Engineers (ASCE). <u>10.1061/9780784483190.045</u>. Wham, B.P., N. Berty*, N., Ihnotic, C., "Experimental Seismic Assessment of Water Distribution Pipelines: Axial Cyclic Testing". <i>Proc., 12th National Conference on Earthquake Engineering</i>, Salt Lake City, UT, 27 June to 1 July 2022 (<i>Under review</i>).
<u>Application</u>	Berty*, N., Wham, B.P., Ihnotic, C.R., Ramos*, J.L., Rose*, H.R. (2022) "Seismic Performance Classification of Hazard Resilient iPVC Pipeline Systems". Proc., ASCE/UESI Pipelines, Indianapolis, IN. (Accepted).
Center for UNIVERSITY	Infrastructure, Energy, and Space Testing OF COLORADO BOULDER Lifelines & Utilities Brad. P. Wham PhD NHERI@UCSD Workshop 40

				100 C 100 C 100 C				
E	Example Testing Overview		Test # (CIEST)	Test Type	Pipe- Connection	Pipe- Material	Av Pr Psi	verage essure (kPa)
			PT02	Axial-Tension	RCT	iPVC-DR14	59	(407)
			PT27	Axial-Tension	TurnerLok	iPVC-DR14	61	(421)
		13.1	PT30	Axial-Tension	EBAA C1900	iPVC-DR14	63	(434)
-	ATHYONTY LONGO Coolo Tooto	Contraction of the	PT33	Axial-Tension	Lokx	iPVC-DR14	64	(441)
	• Twenty Large Scale Tests		PT38	Axial-Tension	Hymax Grip	iPVC-DR14	64	(441)
			PC37	Axial-Compression	RCT	iPVC-DR14	64	(441)
	• $\Delta M/M/\Delta CQOO iP/C Pine$		PC28	Axial-Compression	TurnerLok	iPVC-DR14	65	(448)
		and the second	PC31	Axial-Compression	EBAA C1900	iPVC-DR14	67	(462)
			PC35	Axial-Compression	Lokx	iPVC-DR14	64	(441)
	•6 in. (150 mm) Nominal Diameter Pipe		PS12	Axial-Cyclic	RCT	iPVC-DR14	63	(434)
			PS29	Axial-Cyclic	TurnerLok	iPVC-DR14	65	(448)
		And Decision	PS32	Axial-Cyclic	EBAA C1900	iPVC-DR14	66	(455)
	•Pressure Class 305 psi – DR14		PS36	Axial-Cyclic	Lokx	iPVC-DR14	65	(448)
		and the second second second	PS39	Axial-Cyclic	Hymax Grip	iPVC-DR14	65	(448)
	•5 - Coupling Systems	and the second second	PB02	Bending	RCT	iPVC-DR14	53	(365)
	5 Coupling Systems	100 million (100 million)	PB11	Bending	TurnerLok	iPVC-DR14	65	(448)
			PB12	Bending	EBAA C1900	iPVC-DR14	67	(462)
	1 A A A A A A A A A A A A A A A A A A A	6	PB13	Bending	Continuous	iPVC-DR14	65	(448)
			PB14	Bending	Lokx	iPVC-DR14	64	(441)
			PB15	Bending	Hymax Grip	iPVC-DR14	63	(434)

Center for Infrastructure, Energy, and Space Testing UNIVERSITY OF COLORADO BOULDER

Lifelines & Utilities

Brad. P. Wham PhD

Axial Cyclic Test

Protocol adapted from FEMA 461 for structural and non-structural building components

Strain Demand Results

Parameter (+ and -)	Class	Seismic Strain Demand						
Axial Strain (a)	αΑ	0.01% up to 0.1%						
8.5	αΒ	0.1% up to 0.5%						
	ας	0.5% up to 1%						
	αD	αD 1% or greater						
Radius of Curvature (R)/ Deflection Angle	PA	R _A > 344m (1130 ft)	φ _A /L _g < 0.167 deg./m (0.051 deg./ft)					
(\$)	рв	$115 \text{ m} (376 \text{ ft}) \le R_B \le 344 \text{m}$ (1130 ft)	$0.167 \le \phi_B/L_g \le 0.5 \text{ deg./m}$ (0.152 deg./ft)					
	рс	$46 \text{ m} (150 \text{ ft}) \le R_C \le 115 \text{ m}$ (376 ft)	$0.5 \le \phi_c/L_g \le 1.25 \text{ deg./m} (0.381 \text{ deg./ft})$					
	ρD	$R_D \le 46 \text{ m} (150 \text{ ft})$	φ _D /L _g ≥ 1.25 deg./m (0.381 deg./ft)					

Axial Strain Demand (System Strain)

Bending Strain Demand (RoC)

Test # (CIEST)	Pipe- Connection	Applied Force Direction	System S	Stain	Strain Demand Class*		Test # (CIEST)	Pipe - Connection	Min R Curv	adius of vature	Max Cu	ırvature	Strain Demand	Percent Exceeding Class D
			in./in.	%	Class	%	Ĺ		in	(m)	in ⁻¹	(m ⁻¹)	Class	%
PT02	RCT	Tension	0.0196	1.96	D	95.8	PB11	Trans and als	(27	(1.50)	0.0150	(0, (2))	D	27(2
PC37	RCT	Compression	0.0139	1.39	D	38.7	(Leak)	TurnerLok	02.7	(1.39)	0.0159	(0.626)	D	2762
PT27	TurnerLok	Tension	0.0131	1.31	D	30.9	DD10	EBAA	64.5	$(1, \zeta A)$	0.01.55	(0, (10))		2600
PC28	TurnerLok	Compression	0.0407	4.07	D	307	PB12	C1900	64.5	(1.64)	0.0155	(0.610)	D	2690
PT30	EBAA C1900	Tension	0.0259	2.59	D	159	PB13	Continuous	80.2	(2.04)	0.0125	(0.491)	D	2150
PC31	EBAA C1900	Compression	0.0345	3.45	D	245	PB14			()		(0.17.2)		
PT33	Lokx	Tension	0.0205	2.05	D	105	(Leak)	Lokx	98.5	(2.50)	0.0102	(0.402)	D	1736
PC35 (Leak)	Lokx	Compression	0.0110	1.10	D	10.5	(LCak)		40.0	(1.27)	0.0201	(0, 701)	D	2510
PT38 (Leak)	Hymax Grip	Tension	0.0104	1.04	D	3.62	PBI5	Hymax Grip	49.9	(1.27)	0.0201	(0./91)	D	3518
PS39 (Comp.)	Hymax Grip	Compression	0.0112	1.12	D	11.7	PB02 (Leak)	RCT	95.4	(2.42)	0.0105	(0.413)	D	1790
Center fo	Center for Infrastructure, Energy, and Space Testing										kshon			

ASCE MOP: Demand vs. Capacity

ISO 16134: Earthquake- and subsidence-resistant design of ductile iron pipe (Japanese Standard)

	Types of join	nts-	K-j	oint	A-j	oint₊	Fla	nge: nt†.	Demand					
	Specimen serial 1	number.		1									Davis, et al.	., 2019
Items.	Seismic	Pange.	1.	2.0	1.	2.	10	20	Parameter (+ and -)	Class		Seismic S	train Demand	
nems	classification	, Ranges							Axial Strain (α)	α _A	0.01% up to	0.1%		
100 M	S-1-	δ≥1%L∞	Va	No	ø.	ø	.7	4		α _B	0.1% up to	0.5%		
Expansio	n	0.50/1.45-10/1	A.591						1	dD dD	1% or great	170 er		
capacity	S-2.	0.5%L≤0<1%L	•	6	•	P	9	*2	Radius of Curvature	0A	$R_A > 344m$	(1130 ft)	$\phi_{A}/L_{a} < 0.167 \text{ deg}/m$	(0.051
δ(mm).	S-3+	δ<0.5%L=	e	÷e:	No	No	41		(R)/ Deflection Angle	F 44	115 (27)	() - P 244	deg./ft)	(
	S-1.	δ≥1%L≠	4	·	- 20	- p :			(φ)	рв	(113 m (376))	$\pi) < R_{\rm B} \leq 344 {\rm m}$	$0.16 / \le \phi_{\rm B}/L_{\rm g} < 0.5 {\rm d}$ (0.152 deg./ft)	eg./m
Contracti capacity	on S-2.	0.5%L≤δ<1%L₊	0		0					ρς	46 m (150 f (376 ft)	$(t) < R_C \le 115 \text{ m}$	$0.5 \le \phi_{\rm C}/L_{\rm g} < 1.25 \rm deg$	g./m (0.381
δ(mm).	S-3.	δ<0.5%L+	V.	$\sqrt{2}$	No	$\sqrt{\phi}$	ي. م	a a		ρD	$R_D \le 46 \text{ m}$ ((150 ft)	$\phi_D/L_g \ge 1.25 \text{ deg./m} (\text{deg./ft})$	0.381
	Aø	F≥3d₀	ø	ø	· @ .	φ	ø.	φ.						
Shp-out	Bø	1.5d≤F<3d₀	ø	ø	æ	Q.	4	ø		E F				ISO DIP
E(LN)	Co	0.75d≤F<1.5d₀	ę	2	1.01	e.	1	.p		1	Performance	ISO 16134	ISO 16134	Ecre for
r(kiv),	Dø	F<0.75de	No	No	No	No	1:0	VN p			Class	(kN)	(US units)	$\mathbf{D} = 6$ in.
Rotation	M-1.0	⊕≥15°¢	2	. e	್ಲಾ	:		÷.					(kips)	(kips)
deflection	1 M.2.	7.5°≤θ<15°.	al.	al.							Φ _A	less than 0.75D	less than 4.3D	< 25.7
capacity	101-2+		V.e	V.P	- 4 ² .	· •	*				Φ _B	0.75D to 1.5D	4.3D to 8.6D	25.7
θ(deg).	M-3.	θ< 7.5°.	1	ø	$\sqrt{2}$	$\sqrt{\phi}$	No	$\sqrt{\omega}$			Φ _c	1.5D to 3D	8.6D to 17.1D	51.4
L: nomin	al pipe length (m	m);-							0 ''		Φ	greater than 3D	greater than 17.1D	102.8
t: compr	ession strength w	as too high to be te	sted	to fa	ailure	::+	14	50	Capacity					
*: tensile	strength at which	n water pressure wa	as lo	st.+			R	50,		- L				
	for Infrastructure, E	Energy, and Space T	estin	ıg				L	Brad. P. Wham	PhD		NHERI	@UCSD Workshop	40

Connection Force Capacity Results

	Axial	Capacity	Connection
Pipe-Connection	Kips	(kN)	Force Capacity Class
RCT Coupling	55.3	(246)	С
TurnerLok Gasket	34.6	(154)	В
EBAA C1900 Restraint	38.1	(169)	B-C
Lokx Coupling	-35.3	(-157)	В
Hymax Coupling	27.9	(124)	В

	System Parameter	Units		RCT (iPVC)		TurnerLok (iPVC)		EBAA C1900 (iPVC)		Lokx (iPVC)		Hymax Grip (iPVC)	
	Outer Diameter, D _o	in.	(mm)	6.9	(175)	6.9	(175)	6.9	(175)	6.9	(175)	6.9	(175)
-	Thickness, t	in.	(mm)	0.49	(12)	0.49	(12)	0.49	(12)	0.49	(12)	0.49	(12)
	Connection Diameter, D _b	in.	(mm)	8.73	(222)	8.0	(203)	9	(229)	8.75	(222)	11.3	(287)
	Lay Length, Lp	ft.	(m)	20	(6.1)	20	(6.1)	20	(6.1)	20	(6.1)	20	(6.1)
	Allowable Joint Displacement, Δj	in.	(mm)	0	(0)	0	(0)	0-2	(0-49)	0	(0)	0	(0)
	Young's Modulus, E	ksi	(GPa)	450	(3.1)	450	(3.10)	450	(3.10)	450	(3.10)	450	(3.10)
	Allowable Joint Strain, γ _P		%	0	(0)	0	(0)	0 - 0.83	(0 - 0.83)	0	(0)	0	(0)
~	di/Φ		-	0.7	(0.7)	0.7	(0.7)	0.7	(0.7)	0.7	(0.7)	0.7	(0.7)

Lifelines & Utilities

| Brad. P. Wham PhD

Looking Forward & Research Opportunities

- Evaluation and qualification of new/existing infrastructure systems
 - Develop seismic testing standard for product adoption (HR system)
 - Combined (bi-axial) and cyclic loading without soil hybrid testing applications
- Centrifuge modeling for parametric studies
 - Axial response of enlarged components (paired with FEM)
 - Transverse response of segmented systems

Center for Infrastructure, Energy, and Space Testing UNIVERSITY OF COLORADO **BOULDER**

Lifelines & Utilities

Brad. P. Wham PhD

Center for Infrastructure, Energy, and Space Testing UNIVERSITY OF COLORADO BOULDER

Lifelines & Utilities

Brad. P. Wham PhD

NHERI@UCSD Workshop

Structural

- 300

250

200 (µ-Ny) 150

100

50

n

0.6

0.4

0.2

-0.2

-0.4

-0.6

25

First Leak

 $\theta = 17.5^{\circ}$

20

0 %

25

20

Failure

Looking Forward & Research Opportunities

- Evaluation and qualification of new/existing infrastructure systems
 - Develop seismic testing standard for product adoption (HR system)
 - Combined (bi-axial) and cyclic loading without soil hybrid testing applications
 - Centrifuge modeling for parametric studies
 - Axial response of enlarged components (paired with FEM)
 - Transverse response of segmented systems
 - Analytical approaches to characterize performance and provide generalized comparison of systems (propose improvements!)
 - **FEM validation of methods**
 - Transverse loading considering M-R resistance a joints
 - Seismic design of water and wastewater pipelines (ASCE Manual of Practice, AWWA, etc.)
 - **CFC Design Charts for Prescriptive Design Method**
 - Transverse Response (considering pipe stiffness and joint deflection capacity)
 - Life cycle (mechanical aging) testing of infrastructure (rehabilitation)
- Smart infrastructure sensors/instrumentation for use in buried environments
- Wildfire effects on Infrastructure

Center for Infrastructure, Energy, and Space Testing UNIVERSITY OF COLORADO BOULDER

Fire Impacts on Water Distribution Infrastructure

- Burning homes **release chemicals**, like benzene. They also act as a fuel source, heating **service lines beneath the ground**.
- Increased water usage during a fire creates decompression and backflow in waterlines.
- Vacuum draws these chemicals into the pipelines. Service lines are heated/damaged.
- Contaminants may absorb into pipe or thermoplastics release VOCs due to combustion.
- Damaged service lines will need to be replaced.
- Interdependences across Lifeline systems

UNIVERSITY OF COLORADO BOULDER

Center for Infrastructure, Energy, and Space Testing

References

- Bartlett, S.F. and Youd, T.L. (1992). "Empirical Analysis of Horizontal Ground Displacement Generated by Liquefaction-induced Lateral Spreads," Technical Report NCEER-92-0021, Multidisciplinary Center for Earthquake Engineering Research, Buffalo, New York.
- Davis, C.A. & Wham, B.P. (2018) "Buried Hybrid-Segmented Pipes Subjected to Longitudinal Permanent Ground Deformation." *Proceedings*, 8th International Symposium on Earthquake Engineering for Lifelines and Critical Infrastructure Systems, Shenyang, China, October 17-19.
- Davis, C.A., Rajah, S., Wham, B.P., & Heubach, W.F. (2019). "Strain Demands on Buried Pipelines from Earthquake-Induced Ground Movements". *Proc., Pipelines 2019.* Nashville: American Society of Civil Engineers (ASCE).
- International Organization for Standardization (ISO). (2006). International Standard ISO 16134:2006 Earthquake- and subsidence-resistant design of ductile iron pipelines. First edition. Switzerland: ICS: 23.040.10, TC/SC: ISO/TC 5/SC 2.
- Kayen, R., Wham, B.P., Grant, A., Atsushi, M., Anderson, D., Zimmaro, P., Wang, P., Tsai, Y.T., Bachhuber, J., Madugo, C., Sun, J., Hitchcock, C., Motto, M. (2019). Seismological, Geological, and Geotechnical Engineering Aspects of the 2018 MW 6.6 Hokkaido Eastern Iburi Earthquake. Geotechnical Extreme Event Reconnaissance (GEER) Association. https://doi.org/10.18118/G6CM1K.

O'Rourke, M.J., & Nordberg, C. (1992). Longitudinal Permanent Ground Deformation Effects on Buried Continuous Pipelines. National Center for Earthquake Engineering Research, NCEER-92-0014.

O'Rourke, M.J., & Liu, X. (2012). Seismic Design of Buried and Offshore Pipelines. Buffalo, NY: Multidisciplinary Center for Earthquake Engineering, MCEER-12-MN04.

- Wham, B.P. & Davis, C.A. (2019). Buried Continuous and Segmented Pipes Subjected to Longitudinal Permanent Ground Deformation. ASCE Journal of Pipeline Systems Engineering and Practice.
- Wham, B.P., Davis, C.A., & Rajah, S. (2019a). "Axial Connection Force Capacity Required for Buried Pipelines Subjected to Seismic Permanent Ground Displacement". *Proc., Pipelines 2019.* Nashville: American Society of Civil Engineers (ASCE).
- Wham, B.P., Berger, B.A., & Davis, C.A. (2019b). "Characterization of soil-structure interaction for seismic design of hazard-resistant pipeline systems". *Proc., 7th Int. Conf. Earthq. Geotech. Eng.* Roma, Italy.
- Wham, B.P., Pariya-Ekkasut, C., Argyrou, C., Lederman, A., O'Rourke, T. D., Stewart, H. (2017). "Experimental Characterization of Hazard-Resilient Ductile Iron Pipe Soil/Structure Interaction under Axial Displacement." *Proceedings*: ASCE Congress on Technical Advancement, Duluth, Minnesota, Sept. 11-13.

Wham, B.P., Argyrou, C., O'Rourke, T.D., Stewart, H.E., & Bond, T.K. (2016) "PVCO Pipeline Performance Under Large Ground Deformation." J. of Pressure Vessel Technology, ASME. Vol.139(1).

- Wham, B. P., & O'Rourke, T.D. (2015) "Jointed Pipeline Response to Large Ground Deformation." Journal of Pipeline Systems Engineering and Practice, ASCE. Vol.7(1).
- Wham, B.P., Berger, B.A., Pariya-Ekkasut, C., O'Rourke, T.D., Stewart, H.E., Bond, T.K. (2018) "Achieving Resilient Water Networks: Experimental Performance Evaluation." *Proceedings*, 11th U.S. National Conference on Earthquake Engineering, Los Angeles, California, June 25-29.
- Wham, B.P., Berger, B.A., Pariya-Ekkasut, C., O'Rourke, T.D. (2018) "Hazard-resilient Pipeline Joint Soil-Structure Interaction under Large Axial Displacement." *Proceedings*: 5th Conference on Geotechnical Earthquake Engineering and Soil Dynamics, Austin, Texas, June 10-13.

Center for Infrastructure, Energy, and Space Testing UNIVERSITY OF COLORADO **BOULDER**

Lifelines & Utilities | Brad. P

Brad. P. Wham PhD