

Preparing an NSF Proposal to Utilize NHERI@UC San Diego LHPOST6

Tara Hutchinson, Professor University of California San Diego

NHERI@UC San Diego User Training Workshop

December 16-17, 2021 University of California, San Diego

Key Steps

- 1) Define project vision
 - a. Test purpose, impact
 - b. Modeling component, impact
 - c. Technology transfer
- 2) Selecting your team
- 3) Developing your schedule
- 4) Estimating your budget

"I think I found what's slowing us down..."

In this discussion, we will focus on test planning in the context of 1-4

1) Vision, Test Purpose, Impact

- Outline the Project Vision
 - These tests are LARGE, COSTLY, and LARGE
 - They will take immense time and resources
 - By their nature, they are landmark and completely unique & support broad visions to solve grand challenge research problems
- Clearly define the Tests Program Purpose
 - Identify the purpose of the test program
 - Focus on clarifying the mechanisms that will dominate the response; this will help you sell your vision, and know what to measure
 - What are the key gaps in knowledge?
 - Past related research
 - Limitations in design codes/methods/standards of practice
- Incorporate modeling/simulation/design standards, for:
 - Validation of existing, advancement of new, extending test scenario conditions, etc.

Test Program Overview (NEESR-BNCS)

- Three-phased full-scale test program conducted on a 5-story building-NCS system
- Vision (short): understand total building system seismic response

Summary of Major NCSs:

- Egress systems: >
 - Operable Elevator
 - Stairs
- Facades:
 - Concrete cladding
 - Balloon framing
- Hospital equipment
- Roof mounted equipment

- Sprinkler and riser systems
- Ceilings
- Interior partition walls

Project Vision (verbose)

- To make breakthrough advances in the understanding of <u>total building</u> <u>systems</u> performance (structural *and* nonstructural systems) under moderate and extreme seismic conditions through full-scale testing.
- Dobtain data, which are sorely needed to characterize the earthquake performance of structural and nonstructural building systems, including nonstructural systems with protective measures.
- ☐ Use this data to validate nonlinear simulation tools, which in turn can be used for higher-performance code design and performance-based seismic design of nonstructural and building systems.
- ☐ Infuse findings into seismic design guidelines and codes
 - Validate current code assumptions
 - Advance current code guidelines

Identify your hopeful impact!

- State your impact in the context of NSF Merit Review Criteria
 - Identify the intellectual impacts: "...potential to advance knowledge..."
 - Identify the **broader impacts**: "...potential to benefit society and contribute to the achievement of specific desired societal outcomes"
 - **Tip:** review NSF criteria (PAPPG NSF 22001) & write your intellectual & broader impacts verbosely within the body of your proposal

2) Choose your project team

- Complex, large test programs can require input and support from large teams:
 - Academics (PIs, graduate students, undergraduate students)
 - Industry partners (design engineers, manufacturers, code experts)
 - Staff (your home University, NHERI@UCSD, DesignSafe-CI)

15 members of the "CFS-Midrise Building" test program (2016), three PIs (UCSD, WPI), two grad students, eight industry partners (four companies), two staff

Plan for your Project Leaders

- Researcher(s) on-site @ UCSD = project leaders
- Manage project resources to achieve deliverable (timeline)
 - Supplies, contractors, equipment
 - Work closely with NHERI staff
- Before coming to UCSD
 - Scheduling
 - CAD drawings (construction, instrumentation)
 - Pre-test analysis
 - Motion selection
 - Instrumentation layout
 - Prepare mathcad/matlab sheets
- At UCSD
 - Instrumentation, cameras
 - Tooling, labeling, oversight/participate in construction

Industry Partners (BNCS)

sto

WORLEY BUILDERS

Also on your team: on-site technical staff@UCSD

Dr. Koorosh Lotfizadeh Project Scientist, **NHERI Operations Manager**

Alex Sherman Site Foreman Construction/de-erection. instrumentation

Jeremy Fitcher **Development Technician** Construction/de-erection, instrumentation

Abdullah Hamid **R&D** Engineer Shake table operation, instrumentation/planning

Roxy & friends (construction supervisor)

3) Develop your schedule (major items)

@Proposal level

- Test planning
 - Construction drawings, pre-test modeling, instrumentation planning, material & construction procurement
- On-site test efforts
 - Construction: duration varies significantly based on test scope (BNCS > 1yr, CFS ~ 5 weeks)
 - <u>Instrumentation</u>: can vary, 2-4 weeks is common, some can occur during construction
 - <u>Test Execution</u>: can vary, 2-4 weeks is common, but depends on how many motions, how much in between (different phases/model configurations, retrofit/repair, inspection downtime, etc)
 - <u>Demolition</u>: don't forget this in your schedule & budget! Can take 2-4 weeks depending on the complexity of specimen!
- Post-test data processing
- Post-test modeling
- Technology transfer disseminate the outcomes of your research project (K-grey)

3) Develop your schedule (on-site efforts)

@Start of project

- Notification of award, rough planning (approximate YrQrt)
- Prior year (narrow in on the quarter)
- ~3 months before (when is highly dependent on complexity)
 - Specimen drawings
 - Test protocol
 - Motion selection, iteration (bare table)
 - Instrumentation plans
- Present to NHERI staff (when is highly dependent on complexity)
 - Solicit input on planning
 - <u>Specimen preparation phases:</u> Specimen construction, attachment to table, mass assembly/attachment, instrumentation
 - <u>Test execution phases:</u> motion selection, scaling, ordering, inspection (& repair or specimen modification?) protocol
 - <u>Test completion:</u> planning for de-erection and disposal of specimen
 - Assure safety protocols are in place

Schedule e.g. (on-site efforts, CFS-HUD)

- Start of construction: (layout, tie-downs); major construction items [4-5weeks]:
 - Structural framing erector (4/18-4/28); mass installation with floors
 - Doors (framing, finish) (5/8-5/13)
 - Interior work (sheetrock, mud/tape) (5/2-5/13)
- Instrumentation (5/9-5/27) [3weeks]
- Seismic tests (5/30-6/3) [1week]
- Remove seismic sensors (6/6-6/10) [1week]
- Fire tests (6/13-7/1) [2weeks]
- 12 weeks total on-site (construction, testing)
- 1 week rapid, modular de-erection

Construction Duration Varies Greatly!

Deconstruction Duration Varies Greatly!

Schedule e.g. (on-site efforts, superstructure construction, BNCS)

ROOF SLAB:

September 21st,2011

FIFTH FLOOR SLAB:

September 6th,2011

FOURTH FLOOR SLAB:

August 19th,2011

THIRD FLOOR SLAB:

August 3rd,2011

SECOND FLOOR SLAB:

July 15th,2011

FOUNDATION:

June 27th,2011

Research Activities (during construction)

- During construction, research team needed to multi-task
 - Conduct pre-test simulations (guide motion selection, instrumentation layout)
 - Watch, document, & take part in (as feasible) construction
 - Create instrumentation drawings
 - Watch, document, & take part in (as feasible) construction

• We created a weekly construction log documenting all key construction activities digitally & disseminating them during a weekly team meeting

An actual schedule (major items, e.g. BNCS)

4) Estimating your budget (Big Picture)

- Research staff (PI, students)
 - Carrying out tests, modeling, project, etc.
 - How many and for how long (designate PI/students to major items)
- Tests
 - Physical test costs
 - Secure donations (complement research funds)
 - Can vary dramatically, some ideas next slide....
- Travel, workshops
 - Supporting your research planning and dissemination
 - How much, how many, purpose, etc.

Overall budget heavily linked to duration, scope of tests, and additional support (outside of NSF resources)

4) Estimating your budget (Physical Test Costs)

- Site <u>will</u> support <u>operations</u> during construction and de-erection
 - Guidance regarding test planning
 - Over-sight during construction and de-erection; execution of tests
- Site is <u>not able to support</u> construction and de-erection costs you will need a separate budget for these costs
 - Select several contractors, request estimates; understand their heavy equipment needs (during construction they will need to either rent the sites equipment or obtain rental outside of site)
 - For initial planning/budgeting, select UCSD-vendor contractors
- Site will provide and support placement of all major sensors
 - Analog sensors, camera system check our inventory against your needs, if there are specialty sensors you will need to budget for them
- Site will <u>not support</u> cost of expendables associated with sensors you will need a separate budget for these costs
 - Strain gages, cabling, labels, unique support brackets for sensors or cameras, damaged sensors and cables (include SOME allowance in your NSF or other complementary funding)

Additional Resources (via DesignSafe)

https://ucsd.designsafe-ci.org/resources/

4) Budget: Expect the Unexpected!

Testing Scope & Project Resources (BNCS)

- Three Test Phases
 - 1. Base isolated building-nonstructural system
 - 2. Fixed base building-nonstructural system
 - 3. Controlled live fire tests
- ~5M US\$, multi-organizational 4 year project (2010-2014)
 - NSF-NEES core research project \$1.2M
 - Englekirk Advisory Board \$1.5M (est)
 - Construction, de-construction & demolition
 - Charles Pankow Foundation \$250k
 - Design guidelines for precast concrete facades
 - California Seismic Safety Commission \$360k
 - Seismic performance of hospitals
 - Industry consortium remainder \$ resources, materials, equipment, technical expertise, etc.

Other considerations when planning your NSF research program: ECO

- Education & community outreach (ECO) is a key element in NSF merit review (broader impacts)
- Experience of NHERI@UCSD Team:
 - Technology transfer (webinars, project videos, laboratory tours, etc)
 - Media relations [Jacobs School of Engineering Media Team (available to help)]: https://jacobsschool.ucsd.edu/news/media-contacts
 - Educating future engineers
 - Seismic outreach ambassador program (eg. NHERI4kids)
 - NSF NHERI REU
 - Graduate student training

Please contact Prof Lelli van den Einde @UCSD for these and many more ideas (see her earlier talk for more ideas!)

Last Remarks

- NHERI@UC San Diego staff and PI/Co-PIs/SP are available resources to help with your proposal planning and project execution
- We recommend discussions during proposal preparation to help develop scope & budget
- All conversations are kept confidential
 - We want to help you succeed! (your success is our success)
 - The actual level of early interactions during project planning with NHERI@UC San Diego is up to you but again, we want you to succeed!

Please reach out — we are here to help you prepare/plan the advancement of your your unique ideas using NHERI@UC San Diego