
Shake Table Testing of GRS 
Bridge Abutments

Prof. John S. McCartney and Yewei Zheng
University of California San Diego

Department of Structural Engineering
Presentation to: NHERI-UCSD Geotechnical Workshop

May 31st, 2017



Acknowledgements

2

2

• Project sponsors: 
– Caltrans
– Pooled fund members 

(WashDOT, UDOT, MDOT)

• Collaborators
– Yewei Zheng, Ph.D. Candidate
– Prof. Benson Shing, Chair of 

SE at UCSD
– Prof. Patrick Fox, Head of CEE 

at Penn State University



Presentation Overview

3

3

• Research Motivation
• Shaking Table Testing Program

– Material Properties
– Test Configuration
– Construction
– Instrumentation 
– Input Motions 

• Test Results and Analysis
– Longitudinal Tests
– Transverse Test

• Conclusions and Future Work



• GRS retaining walls as bridge abutments with bridge loads applied 
directly to the reinforced soil mass

• Many advantages, including lower cost, easier and faster construction, 
and smoother approach roadway transition

4

4

Geosynthetics in 
transportation applications: 

GRS Bridge Abutments

Roadways 

Slopes
Embankments

Retaining walls
Bridge abutments



GRS bridge abutments have been widely used in US, but have not been 
adopted in California due to potential seismic issues:
• Geotechnical: backfill settlement and facing displacement
• Structural: bridge beam and seat movements, impact forces between 

bridge beam and seat, and interaction between bridge superstructure and 
GRS abutment 
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Post-earthquake investigations for the 2010 Maule earthquake, Chile (Yen et al. 2011)

GRS Bridge Abutments



Shake Table Testing Program
Shaking table tests have been used successfully to investigate seismic 
performance of GRS structures (El-Emam and Bathurst 2004, 2005, 
2007; Ling et al. 2005, 2012; Tatsuoka et al. 2012; Helwany et al. 2012)
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UCSD South Powell Structural Lab 
Shaking Table:
• Dimensions: 3 m x  5 m
• Shaking DOF: 1 D in N-S direction
• Maximum gravity load: 350 kN
• Dynamic stroke: ± 150 mm
• Dynamic capacity: 400 kN



Longitudinal Testing

Powell lab shaking table

Support
wall

Steel beams

Bridge beam

Sliding platform
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Bridge seat

GRS abutment

Upper wall



Transverse Testing

Powell lab shaking table
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Bridge beam

GRS abutment

Bridge seat



Similitude Relationships
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Similitude for 1g shaking table tests (Iai 1989)

Stress-strain relationships for model and 
prototype (Rocha 1957; Roscoe 1968)

Model geometry, reinforcement stiffness, 
soil modulus, bridge load, and frequencies 
of earthquake motions were scaled

Goal: Similar response in model and prototype

Variable Theoretical 
scaling factor

Scaling 
factor 

for λ =  2
Length λ 2

Material density 1 1
Strain 1 1
Mass λ3 8

Acceleration 1 1
Velocity λ1/2 1.414
Stress λ 2

Modulus λ 2
Stiffness λ2 4

Force λ3 8
Time λ1/2 1.414

Frequency λ-1/2 0.707



Model Design
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Prototype Model

Product - Keystone

Dimensions 
(L x W x H)

0.6 m x 0.5 m 
x 0.3 m 

0.3 m x 0.25 m 
x 0.15 m 

Prototype Model

Product UX1700 LH800

Stiffness 
(kN/m) 1500 380

Prototype Model

Wall height (m) 4.2 2.1

Bridge seat thickness (m) 0.3 0.15

Clearance height (m) 4.5 2.25

Wall length (m) 4.7 2.35

Wall width (m) 4.2 2.1

Bridge width (m) 1.8 0.9

Block scaling Reinforcement scaling

Model geometry scaling



Backfill Soil
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Backfill Soil Properties
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Properties Value 

Specific gravity, Gs 2.61
Coefficient of uniformity, Cu 6.1
Coefficient of curvature, Cz 1.0
Maximum void ratio, emax 0.853
Minimum void ratio, emin 0.371
Peak friction angle, φ′ (°) 51.3

van Genuchten (1980) SWRC model parameter, avG (kPa-1) 0.5
van Genuchten (1980) SWRC model  parameter, NvG 2.1

Drying curve volumetric water content at zero suction, θd 0.32

Wetting curve volumetric water content at zero suction, θw 0.20

Residual volumetric water content, θr 0



Selection of Compaction Conditions
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Selection of Compaction Conditions
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Backfill Soil
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Geogrid Reinforcement
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Shaking Table Testing Plan
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Test No. 1 2 3 4 5 6

Testing Purpose Baseline

Reduced 

Bridge 

Load

Increased 

Reinforcement 

Spacing

Reduced 

Reinforcement 

Stiffness

Steel 

Welded 

Wire Mesh

Baseline

Bridge Stress

(kPa)
66 43 66 66 66 66

Reinforcement 

Spacing (m)
0.15 0.15 0.30 0.15 0.15 0.15

Reinforcement 

Stiffness (kN/m)
380 380 380 190 4800 380

Shaking 

Direction
Long. Long. Long. Long. Long. Trans.



Construction
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Longitudinal Test Configuration
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Longitudinal Model Geometry
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Longitudinal Model Geometry
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Transverse Test Configuration

22

22



Construction
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Test No. 1 2 3 4 6 Target
Average dry unit 
weight (kN/m3) 16.6 17.1 17.1 16.7 16.6 16.9

Average relative
density (%) 64 73 73 67 65 70

Average water 
content (%) 4.7 6.7 5.5 4.3 5.0 5.0
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Sensors

Strain gauges
String potentiometers
Linear potentiometers
Pressure cells
Load cells
Accelerometers
Dielectric sensors
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Longitudinal Test 
Instrumentation 

Plan
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Longitudinal Section L1

Longitudinal Section L2

Transverse Section T1

Longitudinal Section L1 Longitudinal Section 2Transverse Section T1
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• White noise – characterize system frequencies
• Earthquake motions (scaled frequencies, same accelerations)

1. 1940 Imperial Valley earthquake (El Centro) – PGA = 0.31 g/ PGD = 65 mm

2. 2010 Maule earthquake (Concepcion) – PGA = 0.40 g/ PGD = 108 mm

3. 1994 Northridge earthquake (Newhall) – PGA = 0.58 g/ PGD = 89 mm

• Sinusoidal motions (0.5, 1, 2, 5 Hz)

Imperial Valley - Acceleration Imperial Valley - Displacement

Shaking event Motion PGA (g) PGD (mm)

1 White Noise 0.10 -

2 1940 Imperial Valley 0.31 65

3 White Noise 0.10 -

4 2010 Maule 0.40 108

5 White Noise 0.10 -

6 1994 Northridge* 0.58 89

7 White Noise 0.10 -

8 Sin @ 0.5 Hz 0.05 50.0

9 Sin @ 1 Hz 0.10 25.0

10 Sin @ 2 Hz 0.20 12.5

11 Sin @ 5 Hz 0.25 2.5

12 White Noise 0.10 2.7



Testing System Performance
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• The shaking table performed 
well in displacement-control 
mode for earthquake motions

• The steel connection beams and 
sliding platform successfully 
transmitted table motions to 
the base of the support wall

• The pseudo-spectral 
accelerations of the shaking 
table and target motion are in 
good agreement, which 
indicates that the shaking table 
adequately reproduced the 
salient characteristics of the 
target input motions
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• Seismic displacements at the top are larger than the bottom
• Longitudinal shaking results in displacements in transverse direction

Facing Displacements (long.)
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Facing Displacements (long.)
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L1 – end of construction L1 – the Maule motion

• Reinforcement spacing and stiffness have most significant effects
• Greater bridge load results in larger displacements for static loading, but 

smaller displacements for seismic loading



Bridge Seat Settlements for Test 1
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Bridge Seat Settlements (long.)
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Test No. 1 2 3 4

Testing Purpose Baseline Reduced 
Bridge Load

Increased 
Reinforcement 

Spacing
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Reinforcement 
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• Reinforcement spacing and stiffness have the most significant effects
• Greater bridge load results in larger settlements for static loading, but smaller 

settlements for seismic loading



Acceleration Amplification (long.)

• Acceleration amplification increases with elevation in the GRS bridge abutment
• Amplification ratios increase from retained zone to reinforced zone to wall facing
• Amplification ratios for bridge beam are larger than bridge seat
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Reinforcement Strains (long.)
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• The location of the seismic maximum 
reinforcement strain was observed to 
be under the bridge seat in the upper 
reinforcement layers, but was near 
the facing block connections in the 
lower layers. 

• Residual strains under the bridge 
seat for the upper layers increased 
significantly

• Shaking in the longitudinal direction 
also caused increases in 
reinforcement strain in the 
transverse direction
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Bridge Seat and Beam Interaction
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Transverse Test 
Instrumentation 

Plan
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Facing Displacements (trans.)
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Bridge Seat Settlements (trans.)
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Shaking
Direction

Imperial 
Valley (mm)
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(mm)

Northridge
(mm)

Longitudinal 1.4 1.4 2.2
Transverse 2.5 4.8 4.7
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Conclusions
• Incremental bridge seat settlements under seismic loading are relatively 

small for all tests (ranging from 1.5 mm to 7.0 mm), which would not be 
expected to cause significant damage to bridge structures

• Reducing reinforcement spacing and increasing reinforcement stiffness 
are the most effective means to reduce facing displacements and bridge 
seat settlements under seismic loading

• Greater bridge load resulted in larger deformations for static loading, but 
smaller deformations for seismic loading, which is attributed to the larger 
soil stiffness under greater bridge load

• Incremental bridge seat settlements due to transverse shaking are larger 
than for the longitudinal shaking

• Overall, the MSE bridge abutments show good seismic performance in 
terms of facing displacements and bridge seat settlements
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Ongoing Work
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• FLAC 2D/3D numerical model validation 
for static and dynamic conditions

• Detailed investigations on the seismic 
design of GRS bridge abutments using 
validated numerical models

• The testing program performed in this 
study was limited by the size and payload 
capacity of the shaking table in the 
Powell Structural Lab, so full-scale testing 
on the NHERI shaking table will help to 
alleviate these effects

• Impact of unsaturated soil conditions on 
the seismic compression of backfill soils 
requires further investigations


